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Summary

Longterm weather observations clearly indicate changing climatic conditions in Germany.

Available measurement data indicates an increase of annual average temperature of 1◦ K

and a moderate increase of annual precipitation (9%) during the last century (Schönwiese

et al. (2006)). Both, increases of temperature and precipitation are mainly based on

higher surpluses during the winter seasons until now. Available computer-based climate

simulations project an ongoing warming trend and further changes in the seasonal dis-

tribution of precipitation. These changes in atmospheric conditions had and will have

consequences on water resources IPCC (2007). As extreme changes in water availability

may have severe consequences, such as an higher number or intensity of floods during

winter and/or water shortage in summer, knowledge about possible impacts of climate

change on river hydrology is of great socio-economical relevance.

In this study the output from four methodological similar climate model combinations

is compared and evaluated against observation. Differences in simulated future changes in

the climatology of the Saale River basin, situated in central Germany, and their translation

into river hydrology are quantified. A bias correction is applied and its effects on RCM

simulated meteorology in present and future, as well as consequences for results from the

hydrological modelling are reviewed. In order to estimate regional variations of climate

change impact and performance differences due to catchments size, the study area is

further divided into five sub-catchments covering areas between less than 900 km2 to

more than 23700 km2. Four Regional Climate Models (RCM) from the ENSEMBLES-

Project (van der Linden and Mitchell (2009)), downscaling A1B boundary conditions from

two different Global Circulation Models (GCM), are used to force the hydrological model

mHM. A bias correction is applied and evaluated for the 1961-1990 reference, a 1980-2009

control and two scenario periods (2011-2040 and 2061-2090). Subsequently both datasets

for any RCM are used to generate in overall eight synthetic discharge timeseries at five

different gauging stations. Modelled discharge is evaluated against observation in the

reference and for changes in mean discharge in both scenario periods.

All RCM significantly overestimate past annual precipitation (+24% to + 57%). The

bias correction applied is suitable to reduce these deviations from observational data for

the 1961-1990 correction period considerably (3% and 6%), without substantial side-ef-

fects on RCM dynamics. Forcing the hydrological model with uncorrected RCM data

reproduces the inherent input data biases, certain regional performance differences can
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be stated but non of the simulation results is in a reasonable range. Corrected RCM

data performed rather well, modelled streamflow is in most cases close to observation.

Catchment size does influence model performance, biases are considerably higher at the

two gauging stations covering areas less than about 6000 km2. An increase of annual

mean temperature, ranging from 0.8◦ K to 1.8◦ K in the first and from 2.5◦ K to 3.9◦ K

in the second scenario period, is simulated by all models. Changes in yearly precipitation

range from 0% to 4% in the 2011-2040 and from 4% to 9% in the 2061-2090 period. These

differences are mainly based on upward trends in autumn and winter during the first, and

additionally increasing spring precipitation totals in the second scenario period. Climate

dynamics translates into higher discharge during winter and lower during spring, with

a positive trend in annual mean streamflow in the first but without clear signal in the

second scenario period. Differences in the sub-catchments are rather small. The bias cor-

rection applied is hardly altering climate change impact on hydrology in the first scenario

period but, depending on RCM, more substantially in the second. It could be shown

that simulated impact of climate change is quite sensitive to forcing RCM, whereas the

general tendency of changes, positive or negative in arithmetic sign, is basically controlled

by driving GCM.
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1 Introduction

Problem Formulation

Climate change, a topic gaining much attention during the recent years, is now well

supported by all available longterm weather records. The Fourth Assessment Report

(AR4) of the Intergovernmental Panel on Climate Change (IPCC (2007)) reported an

increase of average surface temperatures over Europe of 0.9◦ K for the 20th century and

an even higher upward trend during the last two decades. The warming is not uniformly

distributed, temperature increases are in general more pronounced in winter and more

substantial in central and north-eastern Europe than in the Mediterranean. Precipitation

measurements indicate even stronger regional differences. Winter rainfall amounts are

increasing in northern and atlantic Europe, whereas total yearly precipitation is decreasing

in the southern part of the continent (IPCC (2007)). Temperature trends in Germany are

slightly higher than in continental average. Within the period from 1901 to 2000 mean

surface temperatures increased about 1◦ K in all seasons. A higher inter-annual variability

is reported for the 1981-2000 time-slice, temperatures increased disproportionally during

winter and are stagnating in autumn (Schönwiese et al. (2006)). Averaged total yearly

precipitation amounts rose about 9% during the 20th century, highest gains are observed

for winter (19%), while in summer a slight but statistically not significant decrease (-3%)

is reported.

The altered meteorology is very likely to be reflected in river discharge. Petrow and

Merz (2009) proved upward flood trends, especially during winter for a large number of

gauging stations all over Germany. For the study area, the basin of the Saale River, there

is no clear evidence for generally increasing yearly maximum discharge. The authors found

an increase of maximum winter and a decrease of maximum summer streamflow volume at

five gauging stations within the study area. The catchment, situated in central Germany,

is already characterised by a distinct hydrological dichotomy between high discharge con-

ditions during the first and a pronounced low flood period during the second half of the

hydrological year. Changes in water supply, as sketched in Petrow and Merz (2009), and

according to the AR4 most likely to aggravate for central Europe, have the potential to

provoke future summer water shortage and winter flood damage. It is therefore of general

importance to estimate possible changes of the climatological conditions and the impacts

on hydrology with the tools available, in order to assess coping capacities and adaption

strategies in time.

1



Climate models, computer-based simulations of the climate systems have become an

important tool for assessing possible future atmospheric trends. Until recently however

all of them lacked a number of shortcomings. Long computational run-time hindered

large ensemble studies (van der Linden and Mitchell (2009)), horizontal resolutions were

usually too coarse to fit the requirements of impact models (Fowler and Kilsby (2007))

and climate models had problems to reproduce observed past climate (e.g. Jacob et al.

(2007), Christensen et al. (2008)). Continuous research effort now provides a reasonable

set of techniques to deal with these methodological challenges. Continuous research effort

is spend to steadily inprove these models and reasonable set of techniques to deal with

methodological challenges is now available.

Model resolutions and consequently the gap between atmospheric and hydrological mod-

els generally decrease (Fowler and Kilsby (2007)), the EU-project ENSEMBLES provides

a large database of output from different dynamical regional climate models, all available

in comparable temporal and spatial scales and therefore qualified for comprehensive multi

model studies (van der Linden and Mitchell (2009)). State of the art mesoscale hydrologi-

cal models allow to appropriately simulate streamflow on modelling scales covering several

km (Kumar (2010)) and a number of bias correction techniques have been proposed to

deal with biased climate model output (e.g. Hay et al. (2000), Kunstmann et al. (2004),

Haerter et al. (2011)).

Literature Review

A number of studies assessing hydrological impacts of climate change in Germany have

been carried out during the last decade. While early publications with a similar setup

to the present study, forcing a hydrological model with climate model data, were mainly

scientifically motivated, public commissioned research efforts gained importance during

the recent years. Examining related scientific literature chronically, advancing computer

hardware technology is tracing on study design. During the years modelling areas in-

creased and temporal and/or spatial resolution generally decreased. Beside these general

tendencies a variety of SRES emission scenarios (IPCC (2000)), downscaling techniques

and hydrological models have been used in order to simulate climate change impact on

river discharge.

Menzel and Bürger (2002) evaluated climate change impact on the hydrology of the

Mulde River, as the Saale a tributary of the Elbe. The hydrological model HBV-D was

driven with statistically downscaled output from the Global Circulation Model (GCM)

ECHAM4/OPYC3, a previous version of ECHAM5/MPI-OM, under the IS92a emission

scenario (see 2.2.1). The authors reported a distinct decrease of monthly mean discharge

for the entire year, but especially during winter and summer, resulting in a more pro-

nounced yearly cycle for the period 2061-2090.

2



Shabalova et al. (2003) used output from the HadRM2 Regional Climate Model (RCM),

a former version of the HadRM3Q0 RCM, to evaluate the climate change signal for the pe-

riod 2080-2099 under the emission scenario IS92a. Two different bias correction methods

have been applied to account for the deviation between simulated and observed clima-

tology. Hydrological modelling with RhineFlow suggested only a slight decrease of the

annual mean, but considerably increased winter and reduced summer discharge. The

effect of bias correction were rather low when examining changes between scenario and

reference period but distinctive with respect to discharge variability.

Kunstmann et al. (2004) used dynamically downscaled IS92a ECHAM4 circulation

fields for streamflow prediction with the hydrological model WaSiM in the small alpine

catchment of the river Ammer. The results indicated a decrease of summer and enhanced

winter discharge for the years 2032-2039. Great differences were reported between the

sub-catchments. It was reported that especially the mountainous basins are likely to see

more pronounced impact of changing climatic conditions than the sub-catchments with

lower elevation differences.

Menzel et al. (2006) used a statistical downscaling approach on ECHAM4/OPYC3

and HadCM model output simulated with IS92a scenario boundary conditions. Assess-

ing climate change impacts on the hydrology of the Rhine catchment with the HBV-D

model, the authors explicitly determined the differences between two different GCM, re-

sults are however only evaluated on the basis of yearly averages. During the control period

(1961-1995), model runs with downscaled GCM data clearly overestimated the results of

a control run driven with measured meteorological input. The ECHAM4/OPYC3 model

usually showed higher biases in the different sub-catchments considering annual mean dis-

charge, a less clear error signal was found with respect to mean flood conditions. Depend-

ing on the sub-catchment, modelling results either over- or underestimated observation,

with highest biases changing between the models. For a future scenario (2061-2095) a

clear increase in both evaluated hydrological parameters was reported, higher even in the

ECHAM4/OPYC3 than the HadCM forced model chain.

A study focused on flood hazards in the upper Danube basin was carried out by Dankers

et al. (2007). The authors explicitly addressed the influence of horizontal resolution when

driving the hydrological model LISFLOOD with RCM data. Two different resolutions

of the HIRHAM RCM were used (12 and 50 km), the former using the A2 scenario, the

latter A2 and B2. The RCM overestimated yearly precipitation amounts, with a slightly

higher bias in the high resolution realisation. The 12 km model run could match the

observational areal precipitation pattern much better then the 50 km one. Differences

resulting from resolution have been quite small in the hydrological simulations, modelling

did only in a few sub-catchments improve substantially. Simulation of future discharge

indicated an altered hydrological regime. Higher mean discharge in winter and lower in

summer accompanied by an increase of flood frequency and/or intensity at most evaluated

3



gauging stations.

Hattermann et al. (2008) presented a study conducted within the framework of GLOWA-

Elbe. The project aimed to assess impacts of climate change on the water balance of the

Elbe catchment, possible feedback and interactions to and with socio-economical changes

and suitable adaption strategies and was founded by the German Ministry of Education

and Research ’Bundesministerium für Bildung und Forschung (BMBF)’. Using the sta-

tistical model STAR to downscale ECHAM4/OPYC3 A1 scenario circulation fields, the

eco-hydrological model SWIM was forced to simulate discharge timeseries for the five

years from 2051-2055. On the back of the project aims, going beyond pure hydrological

processes, the model chain was enlarged. Agro-economical modelling on the global and

the regional scale was included, providing boundary conditions for the hydrological model.

Results indicated a high uncertainty within the modelling chain, the authors did anyhow

propagate two robust trends: reduced water availability in summer and an earlier high

flow period.

In the year 2009 a comprehensive study founded by the Ministry of Agriculture and

Environment of the federal state of Sachsen-Anhalt was published (Kropp et al. (2009)).

This study covers two of the gauges, Hadmersleben (Bode) and Calbe-Grizehene (Saale)

and one of the climate model setups, MPI-M-REMO with ECHAM5/MPI-OM boundary

conditions in the A1B scenario, also used in the work on hand. A bias correction of the

dynamical RCM was done, although the effects on hydrological modelling results were

not explicitly addressed. The statistical RCM WETTREG and the emission scenario

A2 and B1 where further included, and a detailed analysis of projected climate change in

Sachsen-Anhalt was conducted. Both RCM, the statistical WETTREG and the dynamical

REMO projected in all driving scenarios a significant trend of increasing temperatures,

whereby REMO temperature anomalies exceeded the WETTREG projections. With

respect to precipitation the models showed diverging result, a decreasing tendency in

WETTREG and an increasing one in REMO with higher inter-annual variabilities in the

latter. Wettest conditions result from the B1 scenario in both RCM simulations, even

though uncertainty introduced by emission scenario was relatively small. Both RCM

indicated a more balanced future distribution of precipitation throughout the year, lower

amounts during the summer months and higher during winter. WETTREG forcing of

the hydrological model SWIM, indicated a shift of the spring discharge peak into winter

and lower summer discharge for the Saale. The decline of summer water supply was

less distinct and limited to late summer/early autumn in the Bode River catchment.

The REMO driven model runs indicated in turn raising discharge for both catchments,

all emission scenarios and almost throughout the entire year. The increase was more

pronounced during the winter months and tended towards zero during summer. The small

differences between the emission scenarios considering the meteorological parameters are

mirrored in the synthetic discharge timeseries produced with both RCM. The differences
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remained pretty small, with B1 RCM scenarios translating into highest, A2 into lowest

discharge.

A study using the statistical RCM STAR to downscale ECHAM5/MPI-OM A1B sce-

nario output was published by Huang et al. (2010). Using the eco-hydrological model

SWIM streamflow of the largest german rivers Elbe, Ems, upper Danube, Rhine and

Weser was simulated for the periods 2009-2018 and 2051-2060. Two gauging station

within the Saale catchment where included, the basin outlet Calbe-Grizehne and Laucha

at the Saale tributary Unstrut, whereas only the former one was explicitly evaluated.

Decreasing summer and increasing winter precipitation, the with STAR projected cli-

matological trend for the century, were reflected in river discharge. For the 2009-2018

scenario period an increase of the winter discharge volume was reported, but changes

have been relatively small. In the mid-century scenario period more significant changes

were simulated, the authors reported changes in mean seasonal discharge of 13%, -15.5%,

-24.4%, -30.1% for winter, spring, summer and autumn respectively at the gauging station

Calbe-Grizehne.

Summarising the recent literature on hydrological impacts of climate change in Germany

a number of conclusions can be drawn:

1. The hydrological impact of climate change does most likely imply a shift of the high

discharge regime from spring into winter and more pronounced low flow conditions

in summer.

2. The uncertainty introduced by different emission scenarios seems to be rather small,

the variability in hydrological results due to driving GCM is usually not addressed

in the available studies for Germany.

3. Most of the recent studies are focused on the comparison of statistical and dynamical

downscaling approaches, an evaluation of different RCM in hydrological studies is

missing.

Objectives

From the gaps unfilled in dominating climate change impact study design and the previ-

ously sketched problems, how will observed climate dynamics evolve in future, what are

the impacts on river hydrology, how to deal the methodological challenges and uncertain-

ties accumulating in a large modelling chain, the main objectives of this work arise:

1. To analyse the differences in an ensemble of methodological similar GCM-RCM sim-

ulations with identical emission scenario boundary conditions and their translation

into modelled river hydrology.
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2. To quantify uncertainty introduced into hydrological simulations through the links

of the climate model chain, data preprocessing and size of the modelling domain.

3. To estimate robust trends in regional climate projections and hydrological simula-

tions for the mesoscale watershed of the Saale River, central Germany, for the first

and the second half of the century.

Methodology

The output from four dynamical RCM, ETHZ-CLM, HadRM3Q0, ICTP-REGCM and

MPI-M-REMO, the former two downscaling HadCM, the latter ECHAM5/MPI-OM global

A1B emission scenario circulation patterns, is processed. All RCM are provided by the

ENSEMBLES-Project (van der Linden and Mitchell (2009)) in comparable horizontal and

temporal resolutions. Climate model ability to reproduce observed climatological condi-

tions is evaluated against gridded weather station data. Model biases and climatological

dynamics are quantified with respect to monthly and seasonal mean temperatures, pre-

cipitation sums and, as a measure of extreme events, corresponding 95-percentiles, for a

1961-1990 control and two scenario periods (2011-2040 and 2061-2090).

The bias correction method proposed by Kunstmann et al. (2004) is applied, therefore

observational meteorological data is interpolated to RCM grid resolution using Inverse

Distance Weighting. Monthly correction factors are calculated as the quotient of longterm

monthly precipitation sums (1961-1990) from observed and modelled rainfall data and

subsequently multiplied to the respective daily values. The numerical effects of bias

correction and its temporal stability is assessed by evaluating the bias corrected datasets

against observation within a time-slice (1981-2009) not entirely covered by the correction

period and both scenario periods.

The mesoscale hydrological model mHM is, after calibration to observation, forced by

all available data. Synthetic discharge timeseries are generated at five different gauging

stations all over the Saale basin, covering sub-catchments with areas between 888 km2

and 23719 km2. Two of three main tributaries are modelled explicitly, the Unstrut, the

Bode and the Saale in the upper and middle reaches and at the basin outlet. General

performance of all modelling runs is determined at every gauging station for the 1961-1990

period. Climate change impact on hydrology, differences and common trends between

models and preprocessing (i.e. bias corrections) are examined for both scenario periods.
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2 Methods

2.1 The Saale Catchment

The river Saale is, with a drainage area of 24 079 km2 and a mean annual discharge

of 117 m3/s, the second largest tributary of the river Elbe. The catchment lies almost

entirely within the boarders of the Federal Republic of Germany, although small feeders

of the Weiße Elster and the Upper Saale, with an overall area of about 100 km2, origin

on the territory of the Czech republic. The watershed partly covers the five federal

states of Sachsen, Niedersachsen, Bayern, Thüringen and Sachsen-Anhalt. Apart from

this administrative breakdown, the catchment is divided into four subcatchments, the

drainage areas of the Saale itself and of its three main tributaries, Unstrut (6343 km2),

Weiße Elster (5154 km2) and Bode (3297km2) (Internationale Kommission zum Schutz

der Elbe (2005)). Figure 2.1 depicts topography, selected cities, rivers and the locations

of gauging stations of interested for this work.

2.1.1 Hydrography

Short descriptions of the hydrography of the Saale and its three main tributaries, Unstrut,

Weiße Elster and Bode, are given in the following subsections. The figures 2.2 to 2.6 depict

the respective hydrological characteristics, longterm averages of monthly mean discharge

and corresponding variability on the left hand side, yearly cycles, as the quotient of

monthly and yearly mean flow volumes, on the right hand side.

The Saale

The Saale originates on the northern slope of the Fichtelgebirge and flows into the Elbe

near Barby after a total distance of 433,9 km and a difference in elevation of 657,5 m (Inter-

nationale Kommission zum Schutz der Elbe (2005)). In the upper reaches the river passes

the Fränkischen Wald in a narrow winding valley before braking through the Thüringer

Schiefergebirge in a deeply incised one. In the middle reaches the river crosses the mesozoic

mountainous forelands (see Section 2.1.3), where the valley first widens after Rudolstadt

before narrowing again while passing the city of Jena. After taking the Unstrut near

Naumburg and with the transition to the lower reaches, the morphology changes signifi-

cantly. Meandering through a wide, shallow valley the Saale unites with the Weiße Elster
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Figure 2.1: Map of the Saale River catchment. Source of the digital elevation model
(DEM): Bundesamt für Kartographie und Geodäsie (BKG).

in the Leipziger Tieflandsbucht and takes it last large influx, the Bode, in the Elbe glacial

valley near Bernburg, before the stream itself discharges into the Elbe (Internationale

Kommission zum Schutz der Elbe (2005)). The hydrological regimes of the Saale and

of all its major tributaries is heavily altered by a vast number of transverse structures,

dams and retention areas. The discharge of the Saale itself is primary controlled by the

Saale-Damsystem, damming the river in the upper reaches on a stretch of nearly 80 km.

With an overall storage volume of more then 411 million m3, the management of the

system affects the river flow sustainably, the effects of regulation become apparent in the

figures 2.2 and 2.3.
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Figure 2.2: Gauge Hof, Saale. Timeseries: 1921-2007, source: Landesbetrieb für

Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (2010).
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Figure 2.3: Gauge Rudolstadt, Saale. Timeseries: 1947-2007, source: Landesbetrieb für

Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (2010).

The annual course of discharge at the gauge Hof, upstream the Saale dams, shows a

pronounced annual variation with high differences between mean monthly low and high

flood conditions. At the downstream gauge of Rudolstadt the cushioning effect of river

management is clearly visible. Peak and trough discharge are flattened, inter- and intra-

month variability is reduced.
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Figure 2.4: Gauge Laucha, Unstrut. Timeseries: 1946-2007, source: Landesbetrieb für
Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (2010).

The Unstrut

The Unstrut, the largest of the three feeders drains the southern Harz, the western

Thüringer Wald and, the central Thüringer Becken. The mean annual discharge rate

of 30,3 m3/s is highly variable, due to great differences in altitude and precipitation

(Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (2010)). A

number of dams and retention areas with an overall storage volume of nearly 370 million

m3 (Internationale Kommission zum Schutz der Elbe (2005)) compensate these differ-

ences, giving the annual variability shown in Figure 2.4, highest discharge rates in spring

and pronounced low flow conditions in autumn.

The Weiße Elster

The comparable narrow watershed of the Weiße Elster covers the easterly Thüringer

Schiefergebirge and the westerly part of the Leipziger Tieflandsbucht with a mean an-

nual discharge of 17,5 m3/s (Landesbetrieb für Hochwasserschutz und Wasserwirtschaft

Sachsen-Anhalt (2010)). The river origins in 723 m above sea level within the territory

of the Czech Republic and flows into the Saale on the southerly outskirts of the city

of Halle (78 m above sea level). The mountain stream morphology of the upper Weiße

Elster and its feeders Trieb, Göltzsch, Weida and the lack of sufficient natural retention

areas causes an exceptional high flood risk in the upper reaches. River discharge (see

figure 2.5) is influenced by a number of reservoirs for drinking and industrial water pur-

poses, in total 18 dams with an overall storage volume of 244 million m3 (Internationale

Kommission zum Schutz der Elbe (2005)) and by the lignite strip mining activities in

the Leipziger Tieflandsbucht (Landesbetrieb für Hochwasserschutz und Wasserwirtschaft
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Figure 2.5: Gauge Zeitz, Weiße Elster. Timeseries: 1941-2007, source: Landesbetrieb für
Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (2010).

Sachsen-Anhalt (2010)).

The Bode

The Bode and its tributaries drain large parts of the high precipitation Harz mountains.

The river, more precise the two headwaters Cold and Warm Bode originate at a height of

873 m and 843 m above sea level, respectively. The fall descents quickly from source to

outlet. Passing the town of Thale (156 m above see level) on the fringe of the Harz moun-

tains after 64 km flow length, most of the total altitude difference of 787 m is overcome.

The annual course of discharge with a characteristic peak in spring and distinct low water

conditions in autumn (Figure 2.6) is significantly influenced by the dam buildings of the

Rappbode-Talsperren with a storage capacity of roughly 126 million m3 and a number of

minor ponds, relics of the former mining activities still in use (Internationale Kommission

zum Schutz der Elbe (2005)).

2.1.2 Climatology

The climate of the Saale Catchment, as of the Federal Republic of Germany in general,

is described as warm temperate, fully humid and summer warm, Cfb according to the

Köppen-Geiger climate classification (Kottek et al. (2006)). The weather is in general

strongly influenced by the westerly drift bringing moist air and cyclonic precipitation

from the Atlantic Ocean. Different circulation patterns may occur. Of certain importance

for central European weather conditions, especially during spring, are low-precipitation

easterly and frequently cyclonic northerly drifts (Liedtke and Marcinek (2002)). German
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Figure 2.6: Gauge Hadmersleben, Bode. Timeseries: 1931-2007, Landesbetrieb für
Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (2010).

climate is therefore characterized by a smooth transition from the oceanic affected westerly

to the more continental influenced easterly part of the country.

The National Atlas of the Federal Republic of Germany (Leibniz-Institut für Länderkunde

(2003)) shows the transition from submaritime to subcontinental conditions going right

through the watershed, roughly matching the boundary line between the Leipziger Tieflands-

bucht and the Thüringer Becken. Beside this thermoclimatic classification, the pluvio-

climatic one is of greater hydrological importance. A clear contrast has to be stated

between the precipitation favoured mountainous climates, especially on the westerly ex-

posed slopes of the Harz and the Thüringer Wald and the lowlands. Annual precipitation

over the entire watershed sums up to 615 mm (Internationale Kommission zum Schutz

der Elbe (2005)), but local rates range from about 1800 mm in the Brocken region to 450

mm in the city of Halle. Figure 2.7 depicts the climatology of the catchment.

2.1.3 Geology and Geomorphology

Surface characteristics and geology are important factors in the hydrological cycle, the

complex nature of both is briefly sketched on the following pages. According to the size

of its catchment, the river Saale drains very distinct landscape units. A large number of

names for different sub regions is established, for the sake of simplicity a coarser, geology-

based subdivision into three main units is made here: The paleozoic mountain ranges in

the south and the north-west, the mesosoic mountainous forelands in the centre and the

cenozoic lowlands in the north and the north-east of the watershed. Figure 2.8 depicts an

extract of the geological map provided by the federal geological service.
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Figure 2.7: Maps of interpolated precipitation (l) and temperature (r) data, resolution:
4km, interpolation: External Drift Kriging (subsection 2.6.3). Source of
weather station data: Deutscher Wetterdienst (DWD).

The Cenozoic Lowlands

The lowlands, namely the Leipziger Tieflandsbucht and the Magdeburger Börde are con-

sidered to be the cenozioc transitional zone between the marine depositional environment

of the North German Plain and the terrestrial domain in the south-west (Hennigsen and

Katzung (2006)). The paleogene and neogene sediment package is widely superimposed

by pleistocene glacial deposits and, on a regional scale, altered by human strip mining

activities.

The Mesozoic Forelands

From the Harz in the north to the Thüringer Wald in the south, limited by elongated

faults in the east and the west, extend the mezosoic forelands, the broad Thüringer

Becken and its framing plates. The overall shallow, bowl-like structure is filled with a

sedimentary strata reaching from the upper Permian to the upper Triassic, overlaying

the paleozoic basement and partly covered by cenozoic sediments, basically loess and in

places of considerable thickness (Hennigsen and Katzung (2006)). The roughly concentric

outcrops of sediments of different ages and composition are closely bound to tectonic

processes, namely the descent of the basin centre and the evolution of a north-west/south-

east striking system of faults. The actual topography is controlled by the resistance of

the underlying geological formations. Moving up in the stratigraphy from the rims to the

centre, the sand-, silt- and mudstones of the lower Triassic (Saale-Elster-Platte), but in

particular the limestones of the middle Triassic (Saale-Ilm-Platte) favoured the evolution

of a hilly cuesta dipping towards the basin centre. Deep fluvial cutting on the escarpment
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Figure 2.8: Geology of the Saale Catchment. Source: Geowissenschaftliche Karte der
Bundesrepublik Deutschland 1:2000000 - Geologie (GK2000); Bundesanstalt
für Geowissenschaften und Rohstoffe (BGR).

faces and a varying degree of karstification characterise the actual landscape (Liedtke and

Marcinek (2002)). In the geographical and tectonical centre of the basin structure, the

region around Erfurt, the youngest preserved autochthonal sediments are found. On a

sea level of about 150-200 meters, approximately 200-300 meters lower then the framing

plates, the heterogeneous late Triassic formations induced the development of a much

smoother, undulating terrain with broad valleys and low hills (Bramer et al. (1991)).

The mountain ranges

The north-west/south-east orientated morphological half-horst of the Harz mountains

steeply arises out of its forelands in the north and the north-east and descents smoothly

into the Thüringer Becken bordering in the south (Hennigsen and Katzung (2006)). The

Harz is usually divided into tree units, the Upper-, Middle- and the Lower-Harz. In the

geological literature (e.g. Rothe (2009), Walter (2007), Hennigsen and Katzung (2006))

a further internal subdivision into narrow north-east - south-west striking, with respect

to their geology reasonably homogeneous, zones is made. This structure, with almost

exclusively Paleozoic (Ordovicium to Permian) and mainly non-metamorphic rocks, is

interpreted as a testimonial of the pre-orogeny, geological situation sketching the younger
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tectonic directions (Rothe (2009)). Greywacke, mud- and sandstones with minor deposits

of quarzite, schist and diabas of different ages are the most common rocks in the great

petrographical variety of the Harz. Three mayor granite intrusions are found, the biggest

one of them building the Brocken region in the Upper-Harz, with an elevation of 1141

meters the highest point of the watershed (Rothe (2009)). The topographical evolution

of the Harz is more a result of tectonics, i.e. unequal elevation with highest rates in the

north parts of the massive, and resulting erosion then of the underlying geology. Deep

slopes and high precipitation rates in the Upper-Harz favoured the evolution of a system

of deeply incised valleys at the northerly and the north-westerly rims, the half-horst itself

is structured into different plateaus, each of them over topped by morphological resistant

formations and with decreasing altitude towards the Thüringer Becken in the (Frühauf

and Schwab (2008)).

The Thüringer Wald, morphological a narrow, elongated, north-westwards inclined skid,

is the prominent limitation of the Thüringer Becken in the south of the Saale watershed.

The mountainous range is limited by north-east - south-west oriented faults and clearly

delimited from its forelands; the transition into the Thüringer Schiefergebirge in the south-

east is of much smoother character and without any topographical distinct delimitation

(Rothe (2009)). Due to the high relief ratio on either sides of the crest-line, both rims are

deeply eroded by a close valley system (Bramer et al. (1991)). The internal structure is the

result of the orogenesis of the Paleozoic high-mountains and its erosion. The crystalline

core of gneisses and schists of varying age and metamorphism, the so called Rula-Kristallin

is interrupted by granite intrusion and flanked by two major molasse basins, the Oberhöfer

Mulde in the center and the Eisenacher Mulde in the nort-west of the mountain range.

Both are filled with permian sediments (mainly sandstones, siltstones and conglomerates

of different composition and sorting) and vulcanites of alkaline to rhyolitic chemistry

(Walter (2007)).

Although without obvious borderline to the Thüringer Wald in the west, the Thüringer

Schiefergebirge has to be examined as an independent geological formation. It is morpho-

logical a vast, smoothly northeastwards dipping horst with a more or less plain topog-

raphy on the plateau and deeply cut valleys (Bramer et al. (1991)). Altitude decreases

accordingly from about 800 m in the west to less then 500 m in the north-east. Built of

mostly weakly metamorphic palaeozoic, but also proterozoic sediments (the name giving

shists, greywackes and limestones) and sharply limited by faults in the southwest, the

west and the east, the Thüringer Schiefergebirge is without natural limitation towards

the crystalline mountains of the Fichtelgebirge in the very south of the catchment (Seidel

(2003)).
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2.1.4 Soils

The Soil Regions Map of the European Union and Adjacent Countries 1:5000000 (EUSR

5000) differentiates, based on regional climatology, four main soil regions within the wa-

tershed (figure 2.9). Each region is, according to dominant parent material, further sub-

divided into a number of sub regions, all characterised by a small-scale mosaic of different

soils. Other regional classifications at the same mapping scale exist, nevertheless within

the scope of this work the climatological approach seems to be appropriate.
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Figure 2.9: Soil region map of the Saale River basin. Source: Soil Regions Map of the Eu-
ropean Union and Adjacent Countries 1:5000000 (EUSR 5000); Bundesanstalt
für Geowissenschaften und Rohstoffe (BGR).

1. Soil region with predominant temperate sub-oceanic climate (legend label 111):

On the Triassic sedimentary rocks framing the central Thüringer Basin, the eu-

ropean soil regions map lists Eutric and Dystric Cambisols, Haplic Luvisols and

Rendzic Cambisols as dominating soils. The number of mentioned soils is the result

of the heterogeneous geology and the complexity of overlaying periglacial regolith.

On the sand-, silt- and mudstone of the lower Triassic usually Cambisols and Pod-

zols are developed, depending on the parent material of varying fertility, in places

pearched water influenced or of rendzic character at steeper slopes (Seidel (2003)).
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On the limestone escarpment faces of the middle Triassic sediments catena-like soil

formations dominate. A typical sequence reaches from deep Colluvia on the lower-

to Rendzic Leptosols on the middle- and extremly shallow Syrosems at the upper-

slopes. On the smoothly dipping plateaus mainly Rendzic Leptolsols and Chromic

Cambisols are found, on loess often Eutric Podzoluvisols are developed and on the

inner rim of the soil region the Haplic Luvisols and Luvic Chernozems from the

adjacent region overlap Seidel (2003).

2. Soil region with predominant temperate sub-oceanic climate, influenced by moun-

tains (legend label 125):

The soil region is limited to the mountain range of the Harz. The large-scale soil

map list Dystic and Eutric Cambisols, a somewhat insufficient generalisation for

a in terms of geology, topography and climatology highly variable landscape. A

smaller scale classification lists on the regolith of the Upper Harz, according to

the acid parent rock material and the high amounts of precipitation, Podzols, in

troughs and valleys Gleyic Podzols and Dystric Histolosols, on slopes and knolls

shallow Rendzic Leptolos and Syrosems. On the loess and regolith deposits on the

mainly non metamorphic sedimentary rocks of the Middle and Lower Harz Eutric

and Dystic Cambisols and Dystric Podzoluvisols are dominating (Bachmann et al.

(2008)).

3. Soil region with predominant temperate sub-oceanic to temperate sub-continental

climate (legend labels 134 and 128):

The soil region is roughly congruent with the lowlands within the watershed. On

the central Thüringer Becken, the Magdeburger Börde and the Leipziger Tieflands-

bucht, considerable amounts of loess are accumulated on the different sedimentary

rocks of the upper Triassic and the Cenozoic. Highly fertile Haplic Chernozems are

widespread. The upper slope soil profiles are often cut and degraded to Rendzic

Leptosols, whereas the accumulation of eroded soil material at the low slope areas

favoured the formation of Cumulic Anthrosols (Seidel (2003) and Pälchen (2008)).

Towards the margins of the soil regions and on generally decreasing loess deposits,

the dominating Chernozems are progressively replaced by Luvic Phaenozems of vary-

ing degree of degradation. In the very east of the catchment, in the eastern part

of the Leipziger Tieflandsbucht the dominating soil types change towards Haplic

and Eutric Luvisols, on impervious media also to Stagnic Gleysols. Within the soil

region the floodplains and river terraces have to be considered seperately, generally

high groundwater tables and periodically floodings determine the soil formation and

consequently water influenced soils like Fluvisols, Gleysols and Mollic Fluvisols are

common (Seidel (2003) and Pälchen (2008)).
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4. Soil region with predominant temperate sub-oceanic to temperate sub-continental

climate influenced by mountains (legend label 147):

The region, according to the EUSR characterized by Eutric and Dystric Cambisols

and Haplic Podzols, includes the landscape units Thüringer Wald and Thüringer

Schiefergebirge. The mountain soils of the former show a slight altitude dependence,

Haplic and Cambic Podzols on coarse regolith in the high precipitation crest areas

and Spodic Arenosols and Eutric Cambisols on fine grained substrates at middle

and low altitudes (Seidel (2003)). The soil mosaic of the Thüringer Schiefergebierge

is usually developed in a covering layer of relocated weathering products of the

underlying shists. In the fine grain substratum on the plateaus and moderately

steep slopes Eutric Cambisols are common, in the higher areas Cambic Podzols, in

the lower north and north-easterly parts Eutric Podzoluvisols on loess dominate the

pattern (Seidel (2003)).

2.2 Climate Models

The A1B scenario output from four Regional Climate Models (RCM) nested into two

Global Circulation Models (GCM) was chosen. The datasets are available through the

ENSEMBLES-Project (van der Linden and Mitchell (2009)) and can be downloaded free

of charge from the project homepage data archive (http://ensemblesrt3.dmi.dk/). The

following section gives short delineations about climate models in general and the models

used. As a complete description of the highly complex climate models is out of the scope

of this work, the interested reader is referred to the cited literature and the references

therein.

2.2.1 SRES Emission Scenarios

In order to asses the climatological impacts of human activities, emission scenarios pro-

jecting possible developments of human green-house gas emissions have been introduced

by the ’Intergovernmental Panel on Climate Change’ (IPCC). Since their first definition

in 1990 as part of the IPCC First Assessment Report the scenarios have been updated

twice, in the 1992 IPCC Second Assessment Report and in 2000 within the framework

of the IPCC Third Assessment Report. The emission scenarios are based on scientific

evidence, but are nevertheless no predictions or forecasts, rather then possible results of

future population and economic development (Leggett et al. (1992)).

Four different scenarios were first defined in 1990, the SA90 A-D scenarios, a business-as-

usual scenario (A), and three scenarios assuming a more ecological oriented development

over the whole scenario period (B), during the second half of the century (C) and only in

developed countries (D) (IPCC (1990)). In 1992 six alternative scenarios were published

18



Figure 2.10: Total global annual CO2 emissions from all sources (energy, industry and
land-use change) from 1990 to 2100 (in gigatonnes of carbon [GtC/yr]) for
the four families and six scenario groups. The coloured bands indicate the
range of emission scenarios within the scenario groups (IPCC (2000): 8).

(IS92 a-f), to update and extend the existing ones. The scenarios IS92a and IS92b are

pretty much comparable with the SA90 business-as-usual scenario. IS92c and IS92e mark

the extremes of the emission range, the former one as the lower boundary, with emissions

in 2100 being beneath the 1990 values and the latter as the upper end, projecting emissions

to increase fivefold compared to 1990 (Leggett et al. (1992)). With the Third Assessment

Report the scenario structure changed. Four different scenario families A1, A2, B1 and B2

were defined, each basing on a qualitative storyline on future development. Six scenario

groups are derived, one group each in A2, B1, B2 and three in the A1 family, summarising

the 40 different scenarios (IPCC (2000)). Figure 2.10 shows the corresponding global

carbon dioxide emissions.

1. The A1 storyline is based on rapid economical growth, a global population max-

imum in the middle of the century and a decline afterwards. Cultural and social

interaction between regions increase, differences in per capita income are reduced.

Three groups describe the technological development and the energy sources it is

based on: fossil fuels (A1FI), predominately non-fossil energy sources (A1T), and

an equally balanced energy mix (A1B).
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2. In the A2 storyline economical development is regionally oriented, but slow com-

pared to other storylines. Differences in technological progress and per capita income

remain large, world population increases continuously.

3. In the B1 storyline world population develops similar as within the A1 family but the

future service and information economy is much less material intensive and more

resource-efficient then nowadays. The solution of pestering challenges is globally

oriented and with an emphasis on economic, social and environmental sustainability.

4. The B2 scenario is focused on environmental protection and social equity on the

regional scale. World population is increasing continuously, but less than in the A2

scenario. Economic development and technological change are diverse but slower

than in the A1 and B1 storyline.

2.2.2 Global Circulation Models

Global circulation models (GCM) mark the most complex hierarchical level in climate

modelling, as they attempt to simulate all processes concerning the climate system. All

state of the art GCM extend the mere atmospheric modelling by a number of sub-models

simulating ocean, land surface and sea ice processes coupled internal or by an external

coupling software (McGuffie and Henderson-Sellers (2008)). A number of synonyms like

CGCM (Coupled Global Circulation Model) or AOGCM (Athmosphere Ocean Global

Circulation Model) accounting for the multi-model structure are established. The two

GCM providing boundary conditions for the Regional Climate Models used in this study,

the models HadCM (Hadley Centre Coupled Model) and ECHAM5/MPI-OM (ECMWF

Hamburg version 5 / Max Planck Institute - Ocean Model), both couple an atmospheric

and an ocean part.

Beside a number of similarities within the basic formulations of atmospheric and ocean

transport the two models do differ decisively with respect to the discretization of the

atmospheric modelling domain. HadCM follows a finite grid approach, dividing the at-

mosphere from its lower boundary, the earth surface to its upper one, usually in the

lower stratosphere (McGuffie and Henderson-Sellers (2008)) into a number of horizontally

regularly shaped grid boxes with a latitude-longitude resolution of 2.5◦/3.75◦. The at-

mospheric column on the other hand is divided irregularly into 19 layers, producing grid

boxes with varying height. The vertical discretization is achieved by σ-coordinates (Pope

et al. (2000)), dimensionless functions of lower and upper atmospheric boundary pres-

sures ensuring continuity over the uneven earth surface (McGuffie and Henderson-Sellers

(2008)). The model stores the diagnostic variables at different points on the grid, the

Arakawa B grid used allows to define scalar values like temperature and precipitation at

the grid cell centre and vector quantities like wind at the cell corners. The modelling

20



timestep is thirty minutes, a Fourier filtering is applied to account for decreasing abso-

lute cell sizes towards the poles and the numerical problematic consequence of possible

transfers over one ore more grid cells during one timestep (Stratton (1999)). The single

variables at grid point scale are computed using a split-explicit finite difference method

(Pope et al. (2000)).

The atmospheric part of ECHAM5/MPI-OM, a spectral model, follows a different dis-

cretization approach. Surface processes and vertical dynamics are still approximated on

a rectangular grid but most of the atmospheric variables (i.e vorticity, divergence, tem-

perature and surface pressure) are represented by spherical harmonics (Roeckner et al.

(2006)). The spherical representation and the manipulation of atmospheric fields as waves

simplifies the computation of gradients within the horizontal dimensions, but enforces

constant transformation between the two discretization schemes. The resolution of a

spherical atmospheric model is determined by the wave number of truncation (McGuffie

and Henderson-Sellers (2008)). For the numerical experiments carried out in the ENSEM-

BLES-Project the ECHAM5 atmospheric model was run in T63 resolution giving a grid

cell size of 1.875◦/1.875◦. The model uses 31 vertical layers in an hybrid vertical coor-

dinate system where layers are defined as the pressures at the interfaces between them,

the timestep in T63 resolution is set to 20 min and a weak time filter is implemented

(Roeckner et al. (2006)).

2.2.3 Regional Climate Models

A way to at least partly overcome the limitations resulting from the coarse GCM resolu-

tions, usually still in the range of degrees, are Regional Climate Models (RCM). Different

approaches with characteristic properties exist, roughly classified into statistical and dy-

namical RCM. The former ones statistically relate observed meteorological data with large

scale weather classifications to generate future climate from circulation patterns simulated

by GCM (Wilby and Wigley (1997)). Dynamical RCM are autonomous climate models

covering only the part of the earth surface of interest and in a considerably lower res-

olution (tens of km). They are coupled to GCM in a procedure called nesting (figure

2.11), where the RCM receives boundary conditions, i.e. large scale weather patterns like

pressure fields, from the GCM to simulate regional climate in a scale more appropriate to

resolve small-scale meteorological processes (von Storch et al. (1999)). The models used

in this and described in the following passages all belong to the latter category.
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Figure 2.11: Nesting of a RCM into the driving GCM. Source: https://nar.ucar.edu/2011/

lar/cisl/2000-cisl-science.

All RCM are available in horizontal resolutions of about 25 km, comparable grid cell

sizes have been a directive of the ENSEMBLES-Project. All models handle the effects of

meridian convergence and the resulting reduction of absolute cell areas towards the poles,

ICTP-REGCM uses the Lambert Conformal Conic map projection, the other RCM a

rotated grid, shifting the north pole to 39.25◦/-162◦ latitude/longitude. As a result, the

equator of the modelling coordinate system runs through the center of the modelling do-

main. (Doms (2011)). Major differences in model output concerning the time scheme

exist. The ECHAM5/MPI-OM driven RCM provide output variables as timeseries using

a standard calendar with months of unequal length and leap years, the HadCM models

provide timeseries in a 360-day calendar, dividing the year into 12 equal months of 30

days. The following models have been used:

ETHZ-CLM

The Regional Climate Model CLM (Eidgenössische Technische Hochschule Zürich - Cli-

mate Version of Lokal Modell) is a community based extension of the non-hydrostatic

operational forecasting system of the German Weather Service (DWD). A number of

sub-modules have been implemented under the Consortium for Small-Scale Modelling

(COSMO) in order to use the short range numerical weather prediction system as a

RCM. External forcing in forecast mode, like the states of vegetation, atmosphere and

ocean are included and a complex soil model is added to count for the water and energy
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budget over multi-seasonal calculation periods (Boehm et al. (2006)).

HadRM3Q0

HadRM3Q0 (Hadley Centre Regional Model version 3Q0) is basically an advanced version

of the atmospheric part of the Hadley Centre GCM, HadCM3. A number of improvements

have been made (sulphur cycle, changes in the physical parametrisation), but the main

formulations are adopted in order to ensure consistent projections on the regional and the

global scale (Jones et al. (2004)).

ICTP-REGCM3

ICTP-REGCM3 (Abdus Salam International Centre for Theoretical Physics - Regional

Climate Model version 3) was developed in Trieste, Italy, and implements, similar to the

ETHZ-CLM model, a number of extension to an existing weather forecasting system (e.g.

a land surface model, boundary layer scheme, parametrisation scheme for precipitation)

(Pal et al. (2007)). The dynamical core of the model is provided by the non-hydrostatic

Mesoscale Meteorology Model 5 (MM5), setup at the Pennsylvania State University (PSU)

and the National Center for Atmospheric Research (NCAR) as a community model (Grell

et al. (1994)).

MPI-M-REMO

The only hydrostatic RCM in the model ensemble is the regional climate model from the

Max Planck Institute for Meteorology, REMO (Regional Modell). The model dynamics

is based on the ’Europa-Modell’, a former meso-scale weather forecasting system of the

German Weather service (DWD). For the use in a climate prediction mode, the physical

parametrization of the ECHAM4 GCM was implemented (Jacob et al. (2008)).

2.3 Bias Correction

Due to the bias inherent in climate models (Jacob et al. (2007), Christensen et al. (2008))

and described in much more detail and with particular focus on the study area in chapter

3, it is a common but controversial practice to correct climate model data in order to use

it as forcing of impact models. A number of different approaches have been proposed and

tested for their suitability in hydrological modelling (e.g. Haerter et al. (2011), Yang et al.

(2010), Leander and Buishand (2007), Kunstmann et al. (2004), Hay et al. (2000)). The

idea of correcting climate models for their deviation from observational data is however

always based on at least two assumptions:
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1. The data used for the bias correction, usually spatially interpolated measurement

data, does adequately represent the actual climate.

2. The bias is consistent in time, correction functions derived for the past are suitable

for future.

If these assumptions hold is questionable, however hydrological modelling relies on

reasonably realistic forcing. For that reason a simple, monthly based bias correction, as

suggested by Kunstmann et al. (2004) and employed by Senatore et al. (2011), is applied

to correct climate model precipitation data. Correction factors are calculated for each grid

cell and month individually as the quotient of longterm monthly precipitation sums (1961-

1990) of modelled and observed data, the latter interpolation to the climate model grid

using Inverse Distance Weighting (see subsection 2.6.3). All daily precipitation values are

subsequently multiplied with the respective monthly correction factor. Formally written:

km(i, j) =

1
Y−y

Y∑
y

D∑
d

RCMy,m,d(i, j)

1
Y−y

Y∑
y

D∑
d

OBSy,m,d(i, j)

(2.1)

with km(i, j) denoting the correction factor k for month m and grid cell i, j, RCMy,m,d

and OBSy,m,d the values for any specific date (year y, month m, day d) from modelled

and observational data, D the total number of days in given month and Y the last year

of the correction period.

The procedure results in a numeric adjustment of monthly precipitation sums of the

RCM time series within the correction period but without explicitly correcting the entire

distribution function. In contrast to other methods focusing on the empirical distribution

(e.g. Yang et al. (2010), Leander and Buishand (2007), Shabalova et al. (2003)), the total

number of rain days remains unchanged. This could be considered a shortcoming, the

general idea here is anyhow not to achieve a perfect statistical fit but rather to generate

a reasonably realistic database without changing RCM characteristics fundamentally.

2.4 The hydrological model mHM-UFZ

The hydrological model used for streamflow prediction, mHM-UFZ (mesoscale Hydro-

logical Model - Umwelt Forschungs Zentrum) was developed during the recent years in

the Department Computational Hydrosystems of the Helmeholtz-Zentrum für Umwelt-

forschung in Leipzig, Germany. A brief description of the process based, spatially dis-

tributed, mesoscale, waterbalance model is given in the following subsections, much more

detailed information can be found in Samaniego et al. (2010) and Kumar (2010).
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2.4.1 Model Structure

Figure 2.12 depicts a general scheme of mHM and the different components included into

the model. The core formulations are based on the hydrological model HBV (Bergström

(1995), Hundecha (2004)). A number of new features have been included, namely canopy

interception, a snow accumulation and melting scheme, effects of soil freezing and thaw-

ing, a two layer soil root zone and a cell to cell routing (Kumar (2010)). The model

does furthermore account for up to three different spatial scales, each allowing different

horizontal resolutions:

1. Level 0: The resolution of the morphological input data, such as terrain elevation,

slope, aspect, soil physics, permeability of the main geological formation and land

cover. For this study all physiographical input data is resampled to a resolution of

100 m.

2. Level 1: Modelling scale used to simulate the main hydrological processes, in the

following a horizontal discretization of 4 km is used.

3. Level 2: Horizontal resolution of the meteorological forcing. Here set to 4 km

(observed meteorological data used for calibration/validation) and 24 km (climate

model data).

This differentiated spatial discretization allows the model to account for the variability

in the different datasets on the scale they are available. There is no need and aggregate

input data during preprocessing to the coarser modelling resolution rather then using it

(quasi) as are (Samaniego et al. (2010)).

2.4.2 Model Parameters

For reasons as process and/or spatial complexity, a spatially explicit model must be an

approximation of the main governing processes, accompanied by a number of simplifica-

tions, conceptualisations and errors due to the numerical solutions of the mathematical

process formulation (Kirchner (2006)). Model parameters, i.e. not directly observable

quantities, are used to compensate the inaccuracies introduced by model formulation and

are usually estimated through calibration (Gupta et al. (2002)). mHM defines 28 model

parameters, a complete list can be found in table 2.1.
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Figure 2.12: Schematic representation of different mHM components. X = state variable,
E = actual evaporation, q = component of runoff, S = snow precipitation
depth, R = rain precipitation depth, F = throughfall, I = infiltration ca-
pacity, C = percolation, K = gain/loss flux in a leaking cell, Qr = runoff
produced at cell outlet, k = root zone layer index (k = 1, 2), q = runoff
component (Kumar 2010: 17f).
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Table 2.1: mHM model Parameters (Kumar (2010), Samaniego et al. (2010))

Parameter Unit Description
β1 mm Effective maximum canopy storage.
β2

◦C Threshold temperature for phase transition sow/rain.
β3 - Degree of day factor during rainless days.
β4 mm d−1◦C Rate of increase of the degree day factor per unit of precipita-

tion.
β5 mm d−1◦C Maximum degree day factor reached during rainy days.
βk
6 mm Maximum soil moisture content in the kth horizon.
β7 - Parameter that determines the relative contribution of rain or

snow melt to runoff.
β8 mm Critical value of soil ice content above which the soil is practi-

cally impermeable.
β9 - Shape factor of the gamma distribution that statistically esti-

mates the virtual impermeable area due to frozen soil.
β10 K Antecedent Temperature Index (ATI, a proxy for soil temper-

ature) threshold below which unfrozen water content reaches
its minimum.

β11 K ATI threshold above which no frozen water exist.
β12 - Minimum fraction of unfrozen water content.
β13 - Weighting multiplier ranging from 0.1 to 1.
β14 mm Maximum ponding retention in impervious areas.
β15 - Permanent wilting point.
β16 - Soil moisture limit above which the actual transpiration is

equated with the potential evaporation (PET).
β17 - Fraction of roots in the kth horizon.
β18 mm Maximum holding capacity of the second reservoir (unsatu-

rated zone).
β19 d Fast recession constant.
β20 d Slow recession constant.
β21 - Exponent that quantifies the degree of nonlinearity of the cell

response.
β22 d Effective percolation rate.
β23 d Baseflow recession rate.
β24 - Fraction of the groundwater recharge that might be gained or

lost either as deep percolation or as intercatchment groundwa-
ter flow in nonconservative catchments.

β25 h Duration of the triangular unit hydrograph accounting for the
discharge attenuation within the cell.

β26 h Muskingum travel time parameter.
β27 - Muskingum attenuation parameter.
β28 - Aspect correction factor of the PET.
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2.4.3 Parameter Regionalization

Distributed hydrological models (e.g. TOP-MODEL (Beven et al. (1995)), the distributed

HBV model (Lindström et al. (1997)), WASIM-ETH (Schulla and Jasper (2007))) account

for the spatial variability of catchment properties by discretizing the modelling domain

into small individual homogeneous units, the grid cells. This gain in model representa-

tiveness compared to lumped models, treating the basin as one single modelling unit, is

accompanied by higher complexity of parametrisation (Kumar (2010)). With increasing

modelling area and/or decreasing horizontal resolution the dimensionality of the param-

eter search space rapidly increases (Samaniego et al. (2010)). Considering the 28 mHM

model parameters and the 29205 grid cells discretizing the Saale Catchment with a hori-

zontal resolution of 4 km, 28*29205 = 788535 parameters needed to be estimated.

In order to reduce the number of model parameters, different parametrisation schemes

have been applied, usually based on the grouping of grid-cells into a number of larger, con-

sidered to be homogeneous regions, the ’Hydrological Response Units’ (HRU) (Leavesley

et al. (1983), Flügel (1995)). Model parameters are then estimated for the HRU instead

of the grid cells, reducing the complexity of the optimization problem in dependence of

the simplification introduced by the classification procedure.

Although reasonably good model performances can be achieved applying the HRU con-

cept (e.g. Das et al. (2008), Blöschl et al. (2008)) the classification is static, the delineation

of the individual units arbitrary and a realistic simulation of small scale processes, like

soil moisture patterns, is unlikely (Kumar (2010)). An approach to overcome this short-

comings is the regionalization of model parameters, i.e. the establishment of relationships

between model parameters and catchment properties via regionalization or transfer func-

tions and introduced quantities, the global parameters. In the general formulation:

βl,i(t) = fl(ui, γ) (2.2)

βl,i(t) denotes the lth model parameter for grid cell i at time step t. ul refers to a

vector of physiographical basin characteristics and γ to a vector of global parameters

(Samaniego et al. (2010)). Due to the predefined relationship between model parameters,

global parameters and basin characteristics, the actual model parameters needed to solve

the governing equations can be calculated for every grid cell individually, from the one

set of global parameters. Instead of calibrating all model parameters for any grid cell, the

optimization problem is reduced to the total number of global parameters, in mHM 68.

Although parameter regionalization methods already have been applied in hydrological

models (e.g. Hundecha (2004), Pokhrel et al. (2008)), the regionalization implemented

in mHM and described in detail in Samaniego et al. (2010), follows a slightly different

approach. The calculation of model parameters β is usually accomplished on the mod-

elling scale, thus after an aggregation of input data to a coarser resolution, implicating
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a substantial loss of sub-grid variability (Samaniego et al. (2010)). With the so-called

’Multiscale Parameter Regionalization (MPR)’ introduced in mHM, model parameters

are always estimated on the lowest horizontal resolution (i.e. 100 m) and upscaled to

modelling resolution later on. The effects of this parametrisation have been tested in

extensive numerical experiments by Samaniego et al. (2010) and Kumar et al. (2010) and

can be summarised as follows:

1. Global Parameters are quasi scale independent and transferable over different hori-

zontal resolutions. The time consuming calibration procedure can be done on scale

coarser than the modelling scale, without substantial loss of performance when using

these parameters in finer scaled modelling.

2. Within mesoscale river basins, global parameters are quasi location independent.

Modelling with parameters obtained by calibrating the model at the outlet gauge

shows reasonable performance at internal stations.

2.4.4 Parameter Calibration

To identify feasible sets of global parameters the Dynamically Dimension Search (DDS)

algorithm (Tolson and Shoemaker (2007)) was implemented in mHM, according to Kumar

(2010) a robust and economical optimization method. The objective function to asses

model performance and evaluate the quality of any parameter set generated during the

iterative calibration process is based on daily discharge. The equally weighted average of

the Nash-Sutcliff Efficiencies of daily discharge volumes and their logarithms are used (see

section 2.6.1). The model is calibrated for the water years 2000-2004, using the discharge

data of the basin outlet gauging station Calbe-Grizehne. This period is chosen as it covers

an exceptional extreme event, the January 2003 high flood and distinctive below average

conditions during the second half of the years 2000, 2003 and 2004.

2.5 Data Availability

The input data required to setup and run mHM can be grouped into three different

categories: physiographical characteristics, land cover and meteorological forcing.

2.5.1 Physiographical Characteristics

Necessary morphological information is derived from a digital elevation model (DEM), the

digital soil map ’Bodenübersichtskarte 1:1000000 (BÜK 1000)’ and the hydrogeological

map ’Hydrogeologische Übersichtskarte 1:200000 (HÜK 200)’. The DEM with resolution

of 50 m is provided by the state agency for geoinformation ’Bundesamt für Kartographie
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Figure 2.13: Maps of slope (l) and aspect (r). Calculated from digital elevation data,
resolution: 100 m. Source of the DEM: Bundesamt für Kartographie und
Geodäsie (BKG).

und Geodäsie (BKG)’, the digital maps by the german geological service ’Budesanstalt

für Geowissenschaften und Rohstoffe (BGR)’.

All datasets concerning the physiographical characteristics are resampled to a horizontal

resolution of 100 m using the ’Resample’ - tool and nearest neighbour assignment out of

the ’ArcGIS - Data Management Toolbox’. The resulting DEM is further processes using

the ’ArcGIS - Spatial Analyst Tools’ in order to produce a sinkless DEM (Hydrology -

Fill), calculate flow direction (Hydrology - Flow Direction), flow accumulation (Hydrology

- Flow Accumulation), watershed boundaries (Hydrology - Watersheds), slope (Surface -

Slope) and aspect (Surface - Aspect). Depth and textural composition of soils and soil

horizons are estimated using the ’Bodenkundliche Kartieranleitung’ (AG Boden (1994)),

soil bulk density is calculated as a function of organic and mineral matter (Rawl (1983)).

From the hydrogeological map information about the presence of karstic formations and

the range of mean hydraulic conductivity of the upper groundwater reservoir is gathered,

exact values of the latter are subject to calibration. Figure 2.13 exemplary shows selected

mHM input catchment characteristics.
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Figure 2.14: Land cover for the years 1990 (l) and 2006 (r). Maps derived from Landsat
TM5 scenes, resolution: 100m.

2.5.2 Land Cover

To account for the change in land cover during the recent years, three different land cover

datasets are derived from Landsat TM5 scenes for the years 1990, 2000 and 2006 (see figure

2.14). The satellite images with a horizontal resolution of 30 m are automatically classified

(Bárdossy and Samaniego (2002)) and aggregated into three different land cover types as

proposed by (Samaniego (2003)), namely Forest, impervious cover (e.g. settlement areas,

traffic infrastructure) and permeable cover (e.g. agricultural areas, wetlands). The land

cover information is subsequently resampled to a resolution of 100 m. In the hydrological

modelling the 1990 land use patterns are used to simulated discharge for the years from

1951 to 2000, the second dataset for the years until 2006 and the most actual land cover

information was considered to be valid until the end of the century.

2.5.3 Meteorological Data

The hydrological model mHM relies on spatial averages of three different meteorologi-

cal forcings: daily mean temperature, daily precipitation sums and total daily potential

evaporation. Gridded datasets of daily temperature and precipitation, interpolated from

weather station data provided by the german meteorological service ’Deutscher Wetterdi-

enst (DWD)’, are available. Climate normals necessary in the bias correction procedure

are freely gathered from the DWD-homepage.
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Potential evaporation (PET), the water flux back into the atmosphere, is calculated

using the Hargreaves and Samani method (Hargreaves and Samani (1985)), as direct

measurements are not available. PET Ep is calculated as function of temperature and

extraterrestrial radiation:

Ep = 0.0023 cRa(Tmean + 17.8)(Tmax − Tmin)0.5 (2.3)

where c = 0.408, a constant to convert radiation in millimetre of evaporation equivalent,

Tmean, Tmax, Tmin denote daily mean, maximum and minimum temperatures and Ra the

extraterrestrial radiation as function of Julian day and geographical latitude (Duffie and

Beckman (1980)):

Ra = 15.392 dr(ωs sin φ sin δ + cos φ cos δ sin ωs) (2.4)

dr denotes the relative distance between earth and sun, ωs the sunset hour angle, φ

latitude in radians and δ solar inclination with:

dr = 1 + 0.33 cos

(
2π J

365

)
(2.5)

δ = 0.4093 sin

(
2π J

365
− 1.405

)
(2.6)

ωs = arccos(−tanφ tanδ) (2.7)

2.5.4 Discharge Data

The discharge data of five different gauging stations is available and used in calibration

and validation of mHM. All datasets are provided as timeseries of daily mean discharge

by the federal authority for flood control and water management of Saxony-Anhalt (Lan-

desbetrieb für Hochwasserschutz und Wasserwirtschaft (LHW)) and the environmental

and geological service of Thuringia (Thüringer Landesanstalt für Umwelt und Geologie

(TLUG)). Due to data availability not all the main tributaries are covered explicitly. The

basin of the river Unstrut is entirely covered by the station Laucha, the Bode catchment

area at least to a waste extend by the gauge Hadmersleben. The river Weiße Elster is not

covered directly, the next gauging station Halle-Trotha is located some 14 km after join-

ing the receiving water. Streamflow data for the Saale itself is available at three stations,

Rudolstadt, only a few kilometres downstream the large Saale dam-system, Halle-Trotha

and the outlet gauge Calbe-Grizehene. Table 2.2 lists the main gauging station charac-

teristics.
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Table 2.2: Gauging station characteristics.

Station name Area (km2) Altitude (m) River Data source
Calbe-Grizehne 23719 56 Saale LHW

Halle-Trotha 17979 69 Saale LHW
Laucha 6218 109 Unstrut LHW

Rudolstadt 2678 190 Saale TLUG
Hadmersleben 888 73 Bode LHW

2.6 Statistics

A set of different statistical methods is used in order to preprocess the input to mHM

and to analyse the generated output. In the following the main formulations and short

descriptions are given.

2.6.1 Model Performance Criteria

To asses performance of the hydrological modelling, the four statistical criteria Nash-Sut-

cliff Efficiency (NSE) EQ (Nash and Sutcliffe (1970)), Nash-Sutcliff Efficiency of loga-

rithmic discharge ElogQ, Pearson correlation coefficient r and relative bias bias are used.

These are formally written as:

bias =
1
T

∑T
t=1(Q

′(t)−Q(t))

Q
(2.8)

r =
1

T − 1

T∑
t=1

(
Q′(t)−Q′

SQ′

)(
(Q(t)−Q)

SQ

)
(2.9)

EQ = 1−

T∑
t=1

(Qt −Q′t)

T∑
t=1

(Qt −Qt)

(2.10)

ElogQ = 1−

T∑
t=1

(log Qt − log Q′t)

T∑
t=1

(log Qt − log Qt)

(2.11)

where t denotes an explicit time step, T the total number of time steps, Q(t) observed

discharge at timestep t, Q′(t) simulated discharge at timestep t, S the standard deviation
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and overbar the arithmetic mean.

2.6.2 Data Analysis

In order to analyse the characteristics of the meteorological data (i.e. precipitation) from

the different Regional Climate Model (RCM), relative cumulative frequency distributions

are estimated, their proximity to the distribution from observational data and, as a mea-

sure of extreme events, 95-percentiles are computed.

Cumulative Frequency Distribution

Cumulative distributions functions (CDF) are basically the integral of an histogram, i.e.

the count of values falling into any of a arbitrarily high number of bins, subdividing the

data usually into equally sized classes. The accumulation of these frequencies in the CDF-

plot allows to asses on the vertical axis the relative probability that the corresponding

value on the horizontal axis will not be exceeded (Wilks (2006)). The CDF-plots presented

in the following are calculated from all daily precipitation sums in the dataset (including

the zero precipitation days) with bin widths of 0.1 mm. The class size is determined by

the resolution of precipitation measurement in the available observational dataset.

Percentiles

Percentiles or Quantiles, as well as their special cases Quartile and Median, are values

limiting subsets of the data sample. The 95-percentiles calculated, are therefore the values

greater than or equals to 95% of all values in the respective dataset. Percentiles are a

common measure in extreme value statistics (Schönwiese (2006)) and as such used to asses

the ability of RCM to reproduce heavy rainfall events.

Kolmogorow-Smirnow Test

The Kolmogorov-Smirnow test is a simple measure of similarity of two CDF and defined

as the maximum value of the absolute difference between both. The Kolmogorov-Smirnow

value D is formally defined as:

D = max |CN1(x)− CN2(x)| (2.12)

where CN1(x) and CN2(x) denote two different cumulative distributions functions (Wilks

(2006)). Two datasets are considered to be drawn from the same distribution if the

null-hypothesis is not rejected at a certain significance level α, thus if:

D <

[
1

2

(
1

n1

+
1

n2

)
ln
(α

2

)] 1
2

(2.13)
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where n1 and n2 are the sample sizes of both datasets in comparison (Wilks (2006)).

2.6.3 Spatial Statistics

A number of interpolation schemes have been used in order to link climate model data

to the hydrological model mHM. General principles and/or formulations are given in

the following subsections and can be found in most textbooks on spatial statistics (e.g.

Webster and Oliver (2007), Hengl (2007), Wackernagel (1995)).

Nearest Neighbour Search

In a Nearest Neighbour Search the unknown value of a variable z at any position x0 is set

to the known value of z′ at a position x1, where x1 is the point out of N observations in

the dataset with a minimal distance to x0.

z′(x0) = z(x1) (2.14)

with

x1 = min(d(x0, xi) ∀i ∈ N) (2.15)

d(x0, xi) denotes the distance between the points x0 and x1.

Inverse Distance Weighting

The spatial prediction technique Inverse Distance Weighting is described as a exact and

convex spatial interpolation method (Hengl (2007)). The unknown value of a variable z′

at any location x0 is given as:

z′(x0) =
n∑

i=1

λiz(xi) (2.16)

where λi denote the weighting factors for known values z at locations xi. The weighting

factors λi are estimated as a function of the inverse distance between any given location

and the point in question:

λi(xo) =

1
d(x0,xi)β

n∑
j=1

1
d(x0,xj)β

(2.17)

where d(xo, xi) and d(x0, xj) denote the distances between searched and known points, β

is an arbitrary power parameter adjusting weights. The relative weight of distance points

will decrease with higher values of β (Hengl (2007)). For all interpolation purposes within

this work β = 2 and the absolute distance within points are included into the interpolation

procedure was set to dmax = 30000 meters.
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External Drift Kriging

External Drift Kriging is an non stationary spatial interpolation technique. As with many

other procedures spatial predictions are made as the weighted sum of neighbouring values

(equation eq:IDW). In Ordinary Kriging the problem of weighting is solved by deter-

mining the differences between points mathematically; semivariances are plotted against

distance in an experimental variogram from which an theoretical one is fitted. With the

fitted variogram model the kriging weights can be solved. External Drift Kriging further

sophisticates this approach as related auxiliary predictors are included into the computa-

tion of weights. The interpolation is therefore no longer only a function of the distance

separating points rather then incorporating additional available spatial information. For

more details on the procedure refer to the above mentioned literature, a concrete example

using External Drift Kriging for the interpolation of meteorological data can be found in

Samaniego (2003).

2.7 Data and Model Preprocessing

In order to run the hydrological model mHM with regional climate model (RCM) out-

put, a number of preprocessing steps are necessary. After downloading the data from

the ENSEMBLES-Project homepage, the files, each covering whole Europe and a period

of 10 years were spatially cut and temporarily merged. Bias correction (subsection 2.3)

was applied on this processing level, on the native grid defined by the respective RCM.

Climate normals freely available from the homepage of the german meteorological service

(DWD) were interpolated to the RCM grid resolution by the Inverse Distance Weight-

ing (IDW) method (subsection 2.6.3). After correcting precipitation, all datasets were

resampled to the mHM modelling grid using the nearest neighbour technique (subsec-

tion 2.6.3). A slight horizontal downscaling from 25 km to 24 km was not avoidable as

mHM only accepts meteorological input data resolutions as a multiple of the modelling

scale (i.e. 4 km). With the resampled data potential evaporation was calculated (sub-

section 2.5.3) and all files are converted from the NetCDF format in which they were

provided (http://www.unidata.ucar.edu/software/netcdf) into the mHM native 4-byte

floating point binary format. All these data preprocessing steps were done using the open

source programming language Python (http://python.org), its standard library and the

external modules numpy (http://numpy.scipy.org) for effective matrix manipulation and

processing, scikits.timeseries (http://pytseries.sourceforge.net) for timeseries data han-

dling, pyproj for map projection transformations (http://code.google.com/p/pyproj) and

matplotlib (http://matplotlib.sourceforge.net) for plotting purposes. As the mHM struc-

ture uses explicit dates for input data handling in addition a FORTRAN 2003 subroutine

was implemented to allow the processing of data provided in the 360-day calendar.
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3 Climate Model Data

No matter how sophisticated and complex state-of-the-art climate models are, they still

lack of a number of shortcomings leading to biased model results (e.g. Jacob et al. (2007),

Christensen et al. (2008)). Biases can be found in all output variables, but are normally

highest for precipitation. Reasons for the often poor representation of this hydrological

important parameter are complex, but most likely a result of the coarse model resolutions

and the difficulties to parametrise precipitation dynamics (Huang et al. (2010)). On

the following pages a detailed evaluation of climate model performance and projected

climatological changes are presented.

3.1 Model Evaluation

Two different studies evaluating the Regional Climate Model (RCM) runs realised in

the ENSEMBLES-Project framework quantified model biases. In a comprehensive study

Christensen et al. (2008) analysed biases over the whole modelling domain (i.e. Europe).

The authors proved that three of the four models also used in the study on hand, tend to

underestimated precipitation but to overestimated temperatures in the 1961-1990 control

period, whereas the model ICTP-REGCM showed the opposite pattern. A more local

study evaluating the performance of ENSEMBLES RCM data for the Rhine River basin

was carried out by Hanel and Buishand (2011). All models also analysed on the following

pages clearly overestimated river basin average precipitation in the 1961-1990 control

period. Mean summer rainfall amounts were underestimated by the models ETHZ-CLM

and HadRM3Q0 but overvalued by ICTP-REGCM and MPI-M-REMO and all RCM

overestimated winter precipitation.

To evaluate climate model performance within the area of the Saale watershed, a num-

ber of figures and tables are presented in the following sections. All tabulated biases are

calculated as relative deviations from gridded observational weather station data. The

diverging coordinate systems were homogenised by resampling the RCM data to the hy-

drological model input grid with 24 km resolution using a Nearest Neighbour Search (see

section 2.6.3). In order to equalise the different spatial discretization of 4 km an 24 km,

the interpolated observational dataset was aggregated to the coarser RCM resolution by

averaging the 36 cells within one RCM grid box. As the observational database was only

available within the exact boarders of the Saale catchment, only these, after aggregation,
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63 cells were selected from the RCM as well.

3.1.1 Precipitation
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Figure 3.1: Monthly precipitation sums (l) and 95-percentiles of daily precipitation sums

(r), 1961-1990.

The performance of RCM in representing precipitation is assessed using 30-year av-

erages of monthly and seasonal rainfall amounts and the respective 95-percentiles. The

latter ones are calculated month-wise from all daily precipitation sums available, i.e. in-

cluding the zero precipitation events, in the thirty year period, and are subsequently

averaged to obtain the seasonal or yearly values. The left hand side of figure 3.1 indicates

that all models clearly overestimate precipitation throughout the entire year, but with

higher biases during winter. Even on the monthly scale negative biases are restricted

to one month, August, and two models, ETHZ-CLM and HadRM3Q0, both driven by

the HadCM Global Circulation Model (GCM). In contrast to the results of Hanel and

Buishand (2011), where exactly these two models showed negative biases for the entire

summer season, the overall seasonal precipitation balance for the Saale Catchment is still

positive. Not only the total monthly, seasonal and annual precipitation amounts exceed

the measurements considerably (table 3.1), but also the annual cycle is only poorly rep-

resented. While the climate of the study area is characterised by a precipitation peak

in summer and relatively low values in autumn and winter, only the models HadRM3Q0

and MPI-M-REMO, both nested into different GCM, could at least roughly fit this in-

ter-annual variability. The remaining models either show only slight seasonal variance

and comparable high values throughout the entire year (ICTP-REGCM) or even suggest
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higher amounts during other seasons (ETHZ-CLM).

Table 3.1: Seasonal precipitation sums
∑

[mm] and biases [%], 1961-1990.

Winter Spring Summer Autumn Year∑
bias

∑
bias

∑
bias

∑
bias

∑
bias

DWD 146 - 161 - 201 - 144 - 651 -

ETHZ-CLM 216 49 204 26 202 1 189 32 811 24
HadRM3Q0 200 38 217 34 241 20 158 10 816 25
ICTP-REGCM 257 78 238 47 283 41 243 70 1021 57
MPI-M-REM0 192 32 199 23 252 25 167 17 810 24

The right hand side of figure 3.1 and table 3.2 indicate that all RCM fit the 95-

percentiles of observational data better than monthly or seasonal sums. Although all

models tend to overestimate winter values, especially summer heavy rainfall activity seems

to be fairly well represented.

Table 3.2: Seasonally averaged 95-percentiles of daily precipitation sums [mm] and biases
[%], uncorrected Climate Model data, 1961-1990.

Winter Spring Summer Autumn Year

p95 bias p95 bias p95 bias p95 bias p95 bias

DWD 6.5 - 7.3 - 9.2 - 6.8 - 7.4 -

ETHZ-CLM 8.5 31 8.2 12 9.3 1 8.5 25 8.6 16
HadRM3Q0 8.4 30 8.8 21 10.5 14 7.5 10 8.8 19
ICTP-REGCM 9.9 52 9.0 23 10.6 15 9.8 44 9.8 32
MPI-M-REM0 7.9 22 8.1 11 10.5 14 7.4 9 8.5 15

Figure 3.2 shows seasonal empirical cumulative distribution functions (CDF) of daily

precipitation values, table 3.3 the corresponding Kolmogorov–Smirnov (K-S) values (sub-

section 2.6.2). The differences between the functions are quite striking, at the 5% sig-

nificance level the statistical null hypothesis, i.e. the hypothesis that both samples are

drawn from the same continuous distribution, has to be rejected for all models and sea-

sons. Biases vary somehow accidentally, but models commonly underestimate the number

of dry days, especially in summer. The HadCM models achieve best seasonal fits to ob-

servational data, ETHZ-CLM in summer (K-S: 0.07) and HadRM3Q0 in autumn (K-S:

0.06). Percentiles are mostly shifted towards higher precipitation amounts but deviations

decrease towards the upper end of the CDF.
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Table 3.3: Seasonal Kolmogorov–Smirnov test statistic values, uncorrected Climate Model
data, 1961-1990.

Winter Spring Summer Autumn

ETHZ-CLM 0.16 0.15 0.07 0.09
HadRM3Q0 0.1 0.15 0.09 0.06

ICTP-REGCM 0.2 0.19 0.23 0.22
MPI-M-REM0 0.11 0.12 0.15 0.09
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Figure 3.2: Cumulative seasonal frequency distributions of bias corrected daily precipita-

tion sums, 1961-1990.
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3.1.2 Temperature

With respect to temperature the models perform much better (left hand side of figure

3.3 and table 3.4). The remaining bias, ranging from -0.2◦ K to 0.9◦ K are controlled by

driving GCM. The annual temperature curves for the HadCM driven models ETHZ-CLM

and HadRM3Q0 are largely identical. Both models overvalue temperatures in summer

and underestimate temperatures during the rest of the year, summing up to average

biases about zero. The ECHAM5/MPI-OM driven RCM indeed delimit the span of

model biases at the lower and the upper end. The temperature curved diverge until July

before gradually converging until December, but show anyhow a remarkable analogy in

their yearly cycles. Both models are too warm in winter, as MPI-M-REMO also is during

spring and autumn. ICTP-REGCM produces underestimates temperatures during the

rest of the year.

Table 3.4: Seasonal mean temperatures ∅ [◦C] and biases [◦K], 1961-1990.

Winter Spring Summer Autumn Year

∅ bias ∅ bias ∅ bias ∅ bias ∅ bias

DWD -0.8 - 6.8 - 15.6 - 8.0 - 7.5 -

ETHZ-CLM -0.9 -0.1 6.0 -0.8 17.3 1.7 7.7 -0.3 7.5 0
HadRM3Q0 -0.7 0.1 6.4 -0.4 17.5 1.9 8.0 0 7.8 0.3
ICTP-REGCM 0.6 1.4 6.3 -0.5 14.1 -1.5 7.8 -0.2 7.3 -0.2
MPI-M-REM0 0.7 1.5 8.0 1.2 15.9 0.3 9.1 1.1 8.4 0.9
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Figure 3.3: Monthly mean temperatures (l) and monthly potential evaporation sums (r),

1961-1990.
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3.1.3 Potential Evaporation

Potential evaporation (PET), here a function of geographical position and daily maxi-

mum and minimum temperatures (see subsection 2.5.3), is mainly controlled by summer

temperatures (right hand side of figure 3.3). While the monthly evaporation sums are

roughly identical during winter, spring and autumn, basically unaffected of temperature

differences, even small variations during summer lead to considerably altered PET rates.

Yearly model biases range from -3% to 0% in the HadCM and from -8% to -14% in

the ECHAM5/MPI-OM driven RCM. Deviations between the yearly averages calculated

from observational and modelled climate data are rather small. The comparison to pre-

cipitation totals reveals in turn major differences, as PET exceeds the total yearly rainfall

amount for observational but not for RCM data. The relative biases given in table 3.5

can be misleading, as absolute values for winter, spring and autumn are rather low.

Table 3.5: Seasonal potential evaporation sums
∑

[mm] and biases [%], 1961-1990.

Winter Spring Summer Autumn Year∑
bias

∑
bias

∑
bias

∑
bias

∑
bias

DWD 31 - 207 - 355 - 112 - 705 -

ETHZ-CLM 30 -3 183 -12 371 5 102 -9 685 -3
HadRM3Q0 32 2 193 -7 364 3 117 5 706 0
ICTP-REGCM 30 -3 178 -14 299 -16 97 -13 604 -14
MPI-M-REM0 27 -13 197 -5 321 -9 104 -7 649 -8

3.2 Validation of Bias Correction

The bias correction of climate model data (section 2.3) does change daily precipitation

sums and their variability in time and space considerably. For the period the correction

factors where calculated, 1961-1990, the monthly sums and their annual cycles, are ad-

justed (figure 3.4 and table 3.6). The remaining deviations from observational data are

rather low and a relict of the data homogenisation. In order to asses the effects of bias

correction in a time-slice not entirely covered by the correction period, figure 3.5 opposes

monthly mean precipitation sums from uncorrected and corrected datasets for the years

1980-2009, table 3.7 lists the corresponding seasonal values.
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Table 3.6: Seasonal precipitation sums
∑

[mm] and biases [%], 1961-1990, bias corrected
climate model data.

Winter Spring Summer Autumn Year∑
bias

∑
bias

∑
bias

∑
bias

∑
bias

DWD 146 - 161 - 201 - 144 - 651 -

ETHZ-CLM 155 7 170 5 210 4 154 8 689 6
HadRM3Q0 155 7 173 7 213 6 151 6 692 6
ICTP-REGCM 159 10 168 4 211 5 154 8 693 6
MPI-M-REM0 150 3 166 2 206 2 149 4 670 3
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Figure 3.4: Monthly precipitation sums of uncorrected (l) and bias corrected (r) Climate

Model data, 1961-1990.
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Table 3.7: Seasonal precipitation sums
∑

[mm] and biases [%], 1980-2009.

Winter Spring Summer Autumn Year∑
bias

∑
bias

∑
bias

∑
bias

∑
bias

DWD 156 - 162 - 203 - 160 - 681 -

not corrected

ETHZ-CLM 213 37 210 30 218 7 215 34 856 26
HadRM3Q0 192 23 224 38 263 30 160 0 838 23
ICTP-REGCM 252 62 225 39 283 39 243 52 1003 47
MPI-M-REM0 190 22 187 15 249 23 174 9 800 17

bias corrected

ETHZ-CLM 154 -1 177 9 230 13 174 9 736 8
HadRM3Q0 149 -4 179 10 231 14 155 -3 714 5
ICTP-REGCM 156 0 161 -1 208 2 154 -4 679 0
MPI-M-REM0 151 -3 156 -4 200 -1 154 -4 661 -3
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Figure 3.5: Monthly precipitation sums of uncorrected (l) and bias corrected (r) Climate

Model data, 1980-2009.

In the 1980-2009 period RCM data characteristics is largely comparable to the 1961-

1990 period. Precipitation is generally overestimated and the yearly variability is not

or only roughly represented (figure 3.5). The bias corrected datasets are much closer to

observation (table 3.7), but longterm stability of the correction depends on driving GCM.

The ECHAM5/MPI-OM models deviate only slightly, whereas the bias corrected HadCM

models overestimate precipitation, especially in summer. The RCM climate dynamics is

obviously able to counteract the intended correction. Although the seasonal biases are
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not excessively large, they point to the fact, that the assumption of temporarily stable

biases in climate model output is not necessarily fulfilled.

Table 3.8: Seasonally averaged 95-percentiles of daily precipitation sums [mm] and biases
[%], 1961-1990.

Winter Spring Summer Autumn Year

p95 bias p95 bias p95 bias p95 bias p95 bias

DWD 6.5 - 7.3 - 9.2 - 6.8 - 7.4 -

not corrected

ETHZ-CLM 8.5 31 8.2 12 9.3 1 8.5 25 8.6 16
HadRM3Q0 8.4 30 8.8 21 10.5 14 7.5 10 8.8 19
ICTP-REGCM 9.9 52 9.0 23 10.6 15 9.8 44 9.8 32
MPI-M-REM0 7.9 22 8.1 11 10.5 14 7.4 9 8.5 15

bias corrected

ETHZ-CLM 6.2 -5 6.9 -6 9.7 5 6.9 2 7.4 0
HadRM3Q0 6.6 2 7.0 -4 9.3 1 7.3 7 7.5 1
ICTP-REGCM 6.2 -5 6.5 -11 7.8 -15 6.2 -9 6.7 -10
MPI-M-REM0 6.3 -3 6.7 -8 8.4 -9 6.5 -5 7.0 -5

I II III IV V VI VII VIII IX X XI XII
Month

4

6

8

10

12

14

16

[m
m

]

DWD
ETHZ-CLM
HadRM3Q0
ICTP-REGCM
MPI-M-REMO

I II III IV V VI VII VIII IX X XI XII
Month

4

6

8

10

12

14

16

[m
m

]

DWD
ETHZ-CLM
HadRM3Q0
ICTP-REGCM
MPI-M-REMO

Figure 3.6: Averaged 95-percentiles of uncorrected (l) and bias corrected (r) daily precip-

itation sums, 1961-1990.

Figure 3.6 and table 3.8 indicate that the correction of monthly precipitation sums does

not intrinsically optimise all moments of the distribution equally. 95-percentile biases are

clearly reduced in the HadCM driven models with a tendency to underestimate observation
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in the first and to overestimate it in the second half of the year. The ECHAM5/MPI-OM

RCM biases are larger and in any case negative. In the 1980-2009 period the differences

between both RCM groups are larger. Biases of ETHZ-CLM and HadRM3Q0 are reduced

to good yearly fits, positive deviations are only found in summer but winter percentiles

are represented poorly (figure 3.7, table 3.9). The deviations from observational data

are again always negative for the ECHAM5/MPI-OM models. MPI-M-REMO output

deviates after bias correction even slightly more than before.

Table 3.9: Seasonally averaged 95-percentiles of daily precipitation sums [mm] and biases
[%], 1980-2009.

Winter Spring Summer Autumn Year

p95 bias p95 bias p95 bias p95 bias p95 bias

DWD 7.0 - 7.5 - 9.1 - 7.6 - 7.8 -

not corrected

ETHZ-CLM 8.5 21 8.5 13 10.0 10 9.6 26 9.1 16
HadRM3Q0 8.1 16 9.1 21 11.0 21 7.6 0 8.9 14
ICTP-REGCM 9.7 39 8.7 16 10.5 14 10.1 33 9.8 26
MPI-M-REM0 7.9 13 7.8 4 10.4 14 7.8 3 8.5 9

bias corrected

ETHZ-CLM 6.1 -13 7.2 -4 10.5 15 7.7 -1 7.9 1
HadRM3Q0 6.3 -10 7.2 -4 9.7 7 7.4 -3 7.7 -1
ICTP-REGCM 6.0 -14 6.3 -16 7.7 -14 6.4 -16 6.6 -15
MPI-M-REM0 6.3 -10 6.5 -13 8.2 -10 6.9 -9 7.0 -10
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Figure 3.7: Averaged 95-percentiles of uncorrected (l) and bias corrected (r) daily precip-

itation sums, 1980-2009.
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Figure 3.8 shows the empirical cumulative distribution functions (CDF) of seasonally

aggregated, bias corrected, daily precipitation sums. The fitting has improved for all sea-

sons and models compared to uncorrected data, but the selective impact of the method

becomes apparent. The procedure, a single multiplication, does not alter the general di-

chotomy of dry and rain days in the datasets. values at the upper extreme are therefore

disproportionally reduced to fit the total sums to observation. The mostly sharp inter-

sections of all CDF, located between the 80- and the 90-percentile and 4 to 5 mm/d,

indicate the described effect. The transition marks the shift from overestimation of low

precipitation events to the correction induced underestimation of large rainfall amounts.

Tabulated Kolmogorov–Smirnov values (table 3.10) do not directly reflect the improved

fittings and reveal only slight differences between corrected and uncorrected RCM data.

The differences in number of dry days, obviously close to the maximum differences be-

tween the CDF from observational and uncorrected climate model data, determine the

K-S values. No clear pattern of how modelled CDF fit observed seasonal distributions

is found, the HadCM based models show largest K-S values for spring, the ECHAM5/

MPI-OM nested RCM for summer. Lowest values are distributed almost equally over all

seasons.

Table 3.10: Seasonal Kolmogorov–Smirnov test statistic values, bias corrected Climate
Model data, 1961-1990.

Winter Spring Summer Autumn

ETHZ-CLM 0.12 0.14 0.07 0.08
HadRM3Q0 0.06 0.13 0.09 0.05

ICTP-REGCM 0.15 0.17 0.21 0.18
MPI-M-REM0 0.09 0.11 0.13 0.08
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Figure 3.8: Cumulative seasonal frequency distributions of bias corrected daily precipita-

tion sums, 1961-1990.

Three conclusions can be drawn from the results presented on the previous pages:

1. The bias correction applied is able to approximate a given model variable (i.e.

longterm averages of monthly precipitation sums) to observational data.

2. A correction based on any one statistical parameter, does not necessarily adjust

other comparably well.

3. The effects of bias correction are in circumstances temporarily limited as model

dynamics may counteract the intended adjustments.
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3.3 Projected Climate Change

All remarks about climate model data made hitherto where focused on model performance

with respect to past climate. The evaluation against measurements does deliver import

information about the ability of the models to adequately reproduce the climatic system.

The intrinsic motivation in climate modelling is anyhow the projection of future climate

trends and changes to be expected. As alterations in the variables precipitation and

temperature most likely enforce an hydrological response, possible climate changes (i.e.

changes in precipitation and temperature) for the two scenario periods 2011-2040 and

2061-2090 are examined and presented in the following subsections. Relative or absolute

changes are all calculated from differences between the longterm average values of the

corresponding time-slice and the reference period 1961-1990.

3.3.1 Temperature

All models project raising temperatures as shown in figure 3.9 and the table 3.11. A

grouping of the RCM by driving GCM can be stated. The models MPI-M-REM0 and

ICTP-REGCM project a raise of yearly mean temperatures of 0.9◦ K and 0.8◦ K for the

2011-2040 and 2.5◦ K and 2.6◦ K for the 2061-2090 time-slice, respectively. The nearly

identical changes of monthly mean temperatures are striking. In the 2011-2040 scenario

time-slice MPI-M-REM0 projects maximum temperature differences for autumn (1.2◦ K),

ICTP-REGCM for spring (0.9◦ K). Both models project minimum temperature differences

for winter (0.6◦ K and 0.5◦ K). In the 2061-2090 period minimal warming is projected for

spring (1.9◦ K and 2.1◦ K), highest for winter (2.9◦ K each). The HadCM driven models,

ETHZ-CLM and HadRM3Q0, represent a less stable temperature regime. Changes are

in general higher (2011-2040: 1.5◦ K and 1.8◦ K, 2061-2090: 3.3◦ K and 3.9◦ K) and

although main warming trends are comparable, monthly values deviate discernible. For

the first half of the century both RCM project highest temperature increases for winter

(2◦ K and 2.2◦ K), especially predicted January temperature changes are twice as high

as the yearly mean, and lowest for spring (ETHZ-CLM, 1.2◦ K) or autumn (HadRM3Q0,

1.4◦ K). The warming peak is shifted into autumn in the second scenario period (3.8◦ K

and 4.2◦ K), lowest temperature change is projected for spring (2.4◦ K and 3.4◦ K).
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Table 3.11: Seasonal mean temperatures ∅ [◦C] and changes ∆ [◦K] since 1961-1990. DJF:
Winter, MAM: Spring, JJA: Summer, SON: Autumn.

Winter Spring Summer Autumn Year

2011-2040 ∅ ∆ ∅ ∆ ∅ ∆ ∅ ∆ ∅ ∆

ETHZ-CLM 1.2 2 7.3 1.2 18.8 1.4 9.2 1.5 9.1 1.5
HadRM3Q0 1.5 2.2 8.3 1.9 19.3 1.8 9.5 1.4 9.6 1.8
ICTP-REGCM 1.2 0.5 7.4 1 15.1 0.9 8.8 0.9 8.1 0.8
MPI-M-REM0 1.3 0.6 8.9 0.9 16.9 1 10.3 1.2 9.4 0.9

2061-2090

ETHZ-CLM 2.8 3.6 8.5 2.4 20.8 3.4 11.5 3.8 10.9 3.3
HadRM3Q0 3.2 3.9 9.8 3.4 21.6 4.1 12.3 4.2 11.7 3.9
ICTP-REGCM 3.6 2.9 8.5 2.1 16.9 2.7 10.6 2.7 9.9 2.6
MPI-M-REM0 3.6 2.9 9.9 1.9 18.5 2.6 11.9 2.8 11 2.5

I II III IV V VI VII VIII IX X XI XII
Month

1

0

1

2

3

4

5

6

[°
K]

ETHZ-CLM
HadRM3Q0
ICTP-REGCM
MPI-M-REMO

I II III IV V VI VII VIII IX X XI XII
Month

1

0

1

2

3

4

5

6

[°
K]

ETHZ-CLM
HadRM3Q0
ICTP-REGCM
MPI-M-REMO

Figure 3.9: Changes of monthly mean temperatures [◦K] between 1961-1990 and 2011-

2040 (l), 1961-1990 and 2061-2090 (r).

3.3.2 Precipitation

The figures 3.10, 3.11 and 3.12, 3.13 depict the relative changes to the 1961-1990 con-

trol period of the selected statistical parameters, longterm monthly and 95-percentiles of

daily precipitation sums, for the time-slices 2011-2040 and 2061-2090. The single figures

each oppose uncorrected and bias corrected climate model data for any one period, the

corresponding values are given in the tables 3.12 and 3.13.
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Table 3.12: Changes in seasonal precipitation sums [%] since 1961-1990. DJF: Winter,
MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 10 -3 5 2 4 19 1 -8 -4 3
HadRM3Q0 6 0 2 10 4 13 8 -11 3 3
ICTP-REGCM 8 -4 -6 12 2 12 13 1 9 9
MPI-M-REMO 10 -12 -8 15 0 12 3 -8 13 4

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 11 -3 6 4 4 19 2 -6 -2 2
HadRM3Q0 6 0 1 11 4 13 8 -12 3 2
ICTP-REGCM 8 -4 -6 13 2 12 14 1 10 9
MPI-M-REMO 11 -11 -8 15 1 13 5 -8 14 4
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Figure 3.10: Changes of monthly precipitation sums [%] between 1961-1990 and 2011-

2040, uncorrected (l) and bias corrected (r) Climate Model data.
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Figure 3.11: Changes of monthly precipitation sums [%] between 1961-1990 and 2061-

2090, uncorrected (l) and bias corrected (r) Climate Model data.

Although monthly trends in mean precipitation may deviate distinctively, they are

more stable on a seasonal basis. For the 2011-2040 period all models project increasing

precipitation amounts for winter and autumn. Changes in yearly rainfall are moderate

and in the range from 0% to 4%. The ECHAM5/MPI-OM based RCM indicate a shifted

inter-seasonal variability, less precipitation in spring and summer, more during autumn

and winter. The HadCM nested RCM project also slight upward or stable trends for

the latter seasons. Positive trends for winter precipitation are, in all projections, even

stronger in the second scenario period. The models commonly indicate positive climate

change signals for spring and the overall annual rainfall amounts. Yearly trends show

a GCM controlled pattern. The HadCM models indicate a weaker upward trend, the

ECHAM5/MPI-OM RCM a more pronounced raise for the second scenario period.
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Table 3.13: Changes in seasonally averaged 95-percentiles of daily precipitation sum [%]
since 1961-1990. DJF: Winter, MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 10 3 5 5 6 14 8 -3 2 5
HadRM3Q0 6 0 3 10 5 11 14 -7 5 5
ICTP-REGCM 3 -1 -1 15 4 8 14 9 13 11
MPI-M-REMO 7 -7 -4 18 3 11 6 -1 20 8

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 10 4 6 7 7 15 8 -1 2 5
HadRM3Q0 7 0 1 12 5 12 14 -9 4 4
ICTP-REGCM 4 0 -1 15 4 9 14 8 13 11
MPI-M-REMO 7 -6 -4 17 3 12 6 -1 19 8
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Figure 3.12: Changes of averaged 95-percentiles between 1961-1990 and 2011-2040, un-

corrected (r) and bias corrected (r) Climate Model data.
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Figure 3.13: Changes of averaged 95-percentiles between 1961-1990 and 2061-2090, un-

corrected (l) and bias corrected (r) Climate Model data.

The whole ensemble indicates increasing 95-percentiles for winter, autumn and the

entire for both scenario periods, as well as additionally an upward trend for spring in

the second time-slice. The actual values vary largely but sign and magnitude are closely

related to the trends in monthly and seasonal precipitation sums. The changes in 95-

percentiles usually exceed trends in the latter in most seasons, but fall behind in winter.

Tabulates values 3.12 and 3.13 show that the applied method preserves the general data

characteristics and model dynamics pretty well. None of the projected trends is disturbed.

Differences in relative changes from bias corrected and uncorrected data never exceed two

percentage points but are usually lower.
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4 Hydrological Modelling

A number of hydrological simulation have been carried out using the hydrological model

mHM, observational meteorological data and Regional Climate Model (RCM) output as

forcing. These simulations are in the following also referred to as control and model runs.

To assess general performance of uncorrected and bias corrected RCM driven modelling

and possible trends in future hydrology, the generated discharge is analysed at five gauging

stations for different three time-slices: the 1961-1990 reference and two scenario periods,

2011-2040 and 2061-2090.

4.1 Model Validation

Plots of monthly mean discharge generated with uncorrected and bias corrected RCM data

are presented in the figures 4.1 to 4.5. Seasonal and yearly averages plus their respective

biases are given in the tables 4.2 to 4.6. Table 4.1 list typical model performance criteria as

defined in subsection 2.6.1 for control (1961-1990) and calibration (2000-2004) runs. Given

biases are defined as relative deviations from observed discharge and aggregated from

monthly values. rounding errors may occur when averaging tabulated seasonal values.

Table 4.1: Model performance criteria for calibration (2000-2004) and validation (1961-
1990), bias in [%]. mHM driven by observational meteorlogical data.

Calibration Validation

Gauge NSE r bias NSE r bias

Calbe-Grizehne 0.81 0.91 2 0.75 0.9 -17
Halle-Trotha 0.83 0.92 5 0.75 0.9 -17
Laucha 0.75 0.9 -3 0.74 0.9 -19
Rudolstadt 0.8 0.91 -10 0.65 0.83 -18
Hadmersleben 0.47 0.88 25 0.68 0.85 -4
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4.1.1 Gauge Calbe-Grizehne, Saale

Beside of the good model performance for calibration (NSE: 0.81, r: 0.91) and control run

(NSE: 0.75, r: 0.9, see table 4.1), modelling with observational forcing is still negatively

biased. Yearly mean discharge deviates by -17% from observed data, seasonal biases

range from -20% (autumn) to -15% (winter) (table 4.2). Modelling with uncorrected

Regional Climate Model (RCM) data clearly reflects the extensive positive precipitation

bias described in chapter 3. Discharge is in any case overestimated, yearly biases range

from 52% (MPI-M-REMO) to 180% (ICTP-REGCM). Variability of biases is high for all

models, the most stable modelling output (i.e. minimal differences in seasonal biases) is

produced with MPI-M-REMO forcing. Each model performs least in a different season

(ETHZ-CLM: spring, HadRM3Q0: summer, ICTP-REGCM: autumn, MPI-M-REMO:

winter), both HadCM driven simulations (ETHZ-CLM, HadRM3Q0) fit observation best

in autumn, ICTP-REGCM forced modelling in spring, MPI-M-REMO in summer.

Bias corrected meteorological data produces more reasonable hydrological timeseries.

Generated discharge is in three cases closer to streamflow observation than modelling

with observed meteorological data. Yearly deviations range from -1% for the HadRM3Q0

to 25% for the ICTP-REGCM forcing. The HadRM3Q0 driven run not only produces

lowest yearly, but with exception of autumn also seasonal biases. On a monthly basis,

the good accordance of the HadCM based simulations becomes apparent. Even though

the absolute generated discharge values do deviate from each other, their yearly cycle is

remarkable similar (figure 4.1). The ECHAM5/MPI-OM RCM driven runs are less close

related. The spring high flow period starts later and summer low flood conditions last

longer in the MPI-M-REMO generated results. Bias correction affects the MPI-M-REMO

driven run much as expected, monthly mean values and yearly cycle are comparable to

observation, discharge is however systematically underestimated during the second half of

the hydrological year. Timeseries generated with ICTP-REGCM forcing preserve much

of its former characteristics. Absolute values are reduced to a plausible range, but the

early and distinct winter/spring high flood period is not adjusted.
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Table 4.2: Seasonal mean discharge ∅ [m3/s] and biases [%], gauge Calbe-Grizehne, 1961-
1990.

Winter Spring Summer Autumn Year

∅ bias ∅ bias ∅ bias ∅ bias ∅ bias

Observation 136 - 173 - 98 - 86 - 126 -
Validation 116 -15 145 -16 78 -20 69 -20 105 -17

not corrected

ETHZ-CLM 226 65 321 86 157 61 137 59 218 72
HadRM3Q0 193 42 290 67 178 83 110 27 198 57
ICTP-REGCM 439 221 426 146 244 150 280 224 354 180
MPI-M-REMO 217 59 267 54 139 43 127 47 192 52

bias correcetd

ETHZ-CLM 140 3 193 11 110 13 91 5 138 9
HadRM3Q0 133 -2 175 1 97 -1 80 -7 125 -1
ICTP-REGCM 194 42 201 16 112 14 107 24 158 25
MPI-M-REMO 134 -2 179 3 83 -15 78 -10 122 -4
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Figure 4.1: Monthly mean discharge values, gauge Calbe-Grizehne, 1961-1990. Modelled

with uncorrected (l) and bias corrected (r) climate model data.
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4.1.2 Gauge Halle-Trotha, Saale

At gauge Halle-Trotha control run performance is quite similar to gauging station Calbe-

Grizehne (see figure 4.1), although NSE and r values are slightly higher for calibration

(0.89 and 0.92). Uncorrected RCM data driven simulations are similarly biased as the

results at the former station (table 4.3). The MPI-M-REMO forced simulation is closest to

observation, seasonal biases are considerable but stable (range from 40% to 52%). Largest

seasonal biases produced by any RCM data forcing are equally distributed over the year

(ETHZ-CLM: spring, HadRM3Q0: summer, ICTP-REGCM: autumn, MPI-M-REMO:

winter), the runs forced by the HadCM models deviate least from observation in autumn,

ICTP-REGCM modelling results in spring and timeseries generated with MPI-M-REMO

in summer.

Bias correction could overcome most of the shortcomings, with exception of ICTP-

REGCM forcing all model runs are closer to observation than the control run (table 4.3).

Yearly biases range between -4% and 21% (for HadRM3Q0 and ICTP-REGCM forcing,

respectively). Modelling with corrected MPI-M-REMO data does exactly reproduce the

observed spring discharge average, but the results from the HadRM3Q0 simulation are in

general most reasonable. Plotted monthly values in figure 4.2 indicate that the charac-

teristics of the simulated yearly discharge cycles are related to driving GCM.

Table 4.3: Seasonal mean discharge ∅ [m3/s] and biases [%], gauge Halle-Trotha, 1961-
1990.

Winter Spring Summer Autumn Year

∅ bias ∅ bias ∅ bias ∅ bias ∅ bias

Observation 111 - 141 - 78 - 70 - 102 -
Validation 94 -15 117 -17 63 -19 56 -20 85 -17

not corrected

ETHZ-CLM 180 63 264 88 125 60 110 57 176 71
HadRM3Q0 152 37 232 64 140 80 87 24 158 54
ICTP-REGCM 346 212 336 138 188 142 221 215 278 171
MPI-M-REMO 168 52 211 50 109 40 100 43 150 46

bias correcetd

ETHZ-CLM 109 -2 152 8 87 12 72 2 108 6
HadRM3Q0 104 -6 137 -3 77 -1 63 -10 98 -4
ICTP-REGCM 150 36 158 12 88 12 84 20 124 21
MPI-M-REMO 104 -6 141 0 66 -16 62 -11 96 -7
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Figure 4.2: Monthly mean discharge values, gauge Halle-Trotha, 1961-1990. Modeled with

uncorrected (l) and bias corrected (r) climate model data.

4.1.3 Gauge Laucha, Unstrut

mHM control run performance is lower than at the previous stations, NSE and r values are

pretty stable for calibration (0.75, 0.9) and control run (0.74, 0.9). Biases in the discharge

timeseries generated with uncorrected RCM data range from 30% (HadRM3Q0) to 160%

(ICTP-REGCM), whereas three of the four runs produce biases between 30% and 36%.

Biases in the MPI-M-REMO driven simulations are most stable, HadRM3Q0 data forcing

produces minimal seasonal deviation (autumn: 4%). Three model runs perform best

in autumn (exception ICTP-REGCM: spring), and least in summer (exception ICTP-

REGCM: autumn) (table 4.4).

Bias correction brakes these similarities, highest and lowest deviations from observa-

tional data are distributed more equally. With yearly biases between -1% (ETHZ-CLM)

and 18% (ICTP-REGCM) model runs forced with corrected RCM data are in any case

closer to observation than the control run. Deviations are usually higher in the first half of

the hydrological year, the HadCM RCM generated timeseries match the April discharge

peak, the MPI-M-REMO forced simulation produces comparable values for March (figure

4.3). Compared to the previous stations, monthly biases are more balanced and discharge

generated with corrected RCM data is usually lower than observation (exception ICTP-

REGCM) but higher than control run discharge. Especially MPI-M-REMO modelling

results are clearly negatively biased during the months June to October and preserve the

misrepresentation of the April discharge peak.
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Table 4.4: Seasonal mean discharge ∅ [m3/s] and biases [%], gauge Laucha, 1961-1990.

Winter Spring Summer Autumn Year

∅ bias ∅ bias ∅ bias ∅ bias ∅ bias

Observation 36 - 45 - 24 - 21 - 32 -
Validation 30 -16 37 -17 18 -25 15 -27 26 -19

not corrected

ETHZ-CLM 48 32 62 38 34 39 26 24 44 36
HadRM3Q0 43 18 61 36 38 55 22 4 42 30
ICTP-REGCM 109 202 101 123 56 130 64 204 85 160
MPI-M-REMO 49 34 59 31 33 35 27 29 43 32

bias correcetd

ETHZ-CLM 35 -4 45 -1 26 6 20 -8 32 -1
HadRM3Q0 33 -9 41 -9 22 -8 17 -18 30 -9
ICTP-REGCM 48 32 49 9 27 11 24 14 38 18
MPI-M-REMO 34 -7 42 -8 19 -21 17 -20 29 -12
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Figure 4.3: Monthly mean discharge values, gauge Laucha, 1961-1990. Modelled with

uncorrected (l) and bias corrected (r) climate model data.
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4.1.4 Gauge Rudolstadt, Saale

mHM performance is rather low at gauge Rudolstadt (table 4.1), NSE and r values are

reduced from 0.8 and 0.91 for calibration to 0.65 and 0.83 for the control run simula-

tion. Biases are lower than at gauge Laucha, although seasonal deviations show a greater

dynamics (-10% to -27%). The results from the uncorrected RCM data runs are spe-

cial compared to other stations. Both HadCM RCM driven simulations produce highly

variable seasonal biases, spring discharge is overestimated about 100% but summer and

autumn values are considerably lower. Biases from the ICTP-REGCM model run are

again largest, but lower than at the remaining stations. The good model fit achieved with

MPI-M-REMO data (yearly bias: -3%, seasonal biases between -7% and 18%) is the only

case where modelling with uncorrected climate model data outperforms the control run

simulation. Three of the model runs deviate most from observation in spring (exception

ICTP-REGCM: autumn). Forcing mHM with on of the HadCM models gives least per-

formance in autumn, with ICTP-REGCM in summer and with MPI-M-REMO in winter

(table 4.5).

Bias correction is less effective than at the former stations. All model runs are still pos-

itively biased, yearly deviations range from 9% to 31%, two runs perform better than the

control run simulation. The considerable spring discharge surplus produced with ETHZ-

CLM and HadRM3Q0 data is only slightly reduced and basically a result of overestimated

April discharge (figure 4.4) . While the ICTP-REGCM model run is affected like at other

stations, effects on the MPI-M-REMO simulation are rather unwanted. The slight yearly

bias of -3% increases to 9% and even though autumn deviations could be reduced to 0%,

spring discharge is now considerably biases (34%).

Table 4.5: Seasonal mean discharge ∅ [m3/s] and biases [%], gauge Rudolstadt, 1961-1990.

Winter Spring Summer Autumn Year

∅ bias ∅ bias ∅ bias ∅ bias ∅ bias

Observation 30 - 36 - 20 - 20 - 27 -
Validation 25 -17 32 -10 15 -24 15 -27 22 -18

not corrected

ETHZ-CLM 41 36 72 103 29 42 28 42 44 60
HadRM3Q0 42 41 69 93 36 80 25 26 45 63
ICTP-REGCM 75 152 72 104 40 95 52 158 61 122
MPI-M-REMO 28 -7 42 18 18 -12 18 -12 27 -3

bias correcetd

ETHZ-CLM 33 9 51 43 24 19 23 14 34 23
HadRM3Q0 32 8 44 25 21 5 20 -1 30 12
ICTP-REGCM 45 52 46 29 22 11 26 27 36 31
MPI-M-REMO 31 3 48 34 18 -9 20 0 30 9
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Figure 4.4: Monthly mean discharge values, gauge Rudolstadt, 1961-1990. Modelled with

uncorrected (l) and bias corrected (r) climate model data.

4.1.5 Gauge Hadmersleben, Bode

At the smallest gauging station model performance for calibration is rather low (NSE:

0.47, r: 0.88) but slightly higher for the control run (NSE: 0.68, r: 0.85) (table 4.1).

Relative deviations between simulated and observed streamflow volume, ranging from -

10% (winter) to 0% (summer), are anyhow lower than at the other gauging stations. The

direct use of RCM data in mHM results in yearly biases between 48% (MPI-M-REMO)

and 220% (ICTP-REGCM), whereas seasonal values always from all model runs exceed

39%. The simulations forced with any of the HadCM RCM are closest to observation in

winter and deviate most in autumn, the ECHAM5/MPI-OM runs perform best in spring

and worst in autumn (ICTP-REGCM) and summer (MPI-M-REMO) (table 4.6).

Bias correction could, with exception of the results generated with ICTP-REGCM

data, not significantly improve results. Yearly biases are still in the range of 36% (MPI-

M-REMO) to 78% (ICTP-REGCM), all simulations are higher biased than the control

run and none could approximate observed streamflow. Plotted monthly values indicate

that bias correction leads to a convergence of modelling results and a slightly better fit to

observed data, but also that modelling is not improved the same way it is at the stations

Calbe-Grizehne, Halle-Trotha or Laucha (figure 4.5).
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Table 4.6: Seasonal mean discharge ∅ [m3/s] and biases [%], gauge Hadmersleben, 1961-
1990.

Winter Spring Summer Autumn Year

∅ bias ∅ bias ∅ bias ∅ bias ∅ bias

Observation 18 - 21 - 10 - 9 - 15 -
Validation 16 -10 21 -1 10 0 9 -2 14 -4

not corrected

ETHZ-CLM 26 47 34 62 20 98 17 87 25 68
HadRM3Q0 28 59 39 88 24 147 16 70 28 86
ICTP-REGCM 58 231 54 159 35 257 39 324 47 220
MPI-M-REMO 26 47 29 39 16 62 15 61 22 48

bias correcetd

ETHZ-CLM 24 38 31 51 17 71 14 58 22 52
HadRM3Q0 23 33 30 42 15 49 13 45 21 41
ICTP-REGCM 34 94 32 53 18 79 18 98 26 78
MPI-M-REMO 23 33 29 41 13 29 12 37 20 36
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Figure 4.5: Monthly mean discharge values, gauge Hadmersleben, 1961-1990. Modelled

with uncorrected (l) and bias corrected (r) climate model data.
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4.1.6 General modelling performance

A number of common trends can be extracted from the results presented in the last five

subsections. Most important, the improvements of generated hydrological data caused

by bias correcting the meteorological forcing and differences in modelling performance

obviously related to catchment size. Forcing mHM with uncorrected RCM data usually

multiplies precipitation biases. Bias corrected input data generates in contrary in most

cases reasonably realistic results.

Streamflow generated with bias corrected ETHZ-CLM, HadRM3Q0 and MPI-M-REMO

data is close to observation at the gauging stations Calbe-Grizehne, Halle-Trotha and

Laucha. There is no or only little positive effect in simulations for the gauges Rudol-

stadt and Hadmersleben, both covering considerably smaller sub-catchments. Uncorrected

MPI-M-REMO forcing produced at all station results closest to observation even though

biases are still high, simulations driven with ICTP-REGCM data are always biased most.

Beside the propagated spatial dependency of bias correction, the climate model further

determines the efficiency of the method. ETHZ-CLM and HadRM3Q0 driven hydrological

simulations are more sensitive to bias correction of input data than ICTP-REGCM and

MPI-M-REMO generated results.

4.2 Hydrological Impacts of Climate Change

To asses the impact of projected climate change on the hydrology of the Saale River and

its main tributaries as well as the numerical effects of bias correction on future trends in

hydrology, simulation results for each station and the two scenario periods, 2011-2040 and

2061-2090, are presented in the following subsections. Changes in the hydrological regime,

whether on the monthly basis as depicted in the figures 4.6 to 4.15 or tabulated in the

tables 4.7 to 4.11 are defined as relative deviations from the 1961-1990 reference period

simulations of the respective model. Seasonal and yearly averages are calculated from

monthly changing rates, rounding errors may occur when aggregating tabulated values.

4.2.1 Gauge Calbe-Grizehne, Saale

For the 2011-2040 timeslice a considerable increase of winter, accompanied by a slightly

lower decrease of spring discharge is projected. Three of the uncorrected Regional Cli-

mate Model (RCM) driven hydrological simulations prognosticate highest increases for

January and most substantial decreases for April (see figure 4.6). Climate change im-

pacts are generally higher driving mHM with one of the HadCM RCM. Changes are less

distinctive and univocal in the second half of the hydrological year. Summer discharge is

projected to decrease in the ICTP-REGCM (-6%) and MPI-M-REMO (-11%), to be stable

in the HadRM3Q0 and to increase in the ETHZ-CLM (9%) simulations. The latter model
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forcing produces furthermore a stable, all other RCM inputs a raised autumn discharge

regime. Modelling results are more consistent with respect to yearly average discharge,

as all simulations indicate a slight increase (table 4.7). For the 2061-2090 scenario period

mHM simulations indicate a further increase of winter discharge, mainly the result of

considerably higher December values (figure 4.7) when forced with ICTP-REGCM (22%)

and MPI-M-REMO (31%) data. The streamflow timeseries generated with ETHZ-CLM

input shows no other increase, HadRM3Q0 a decrease of winter discharge compared to

the 2011-2040 time-slice. Both models simulate stable negative trends for the remaining

seasons. The development of yearly mean discharge until the end of the century is ambigu-

ous. The HadCM based simulations indicate a decrease (ETHZ-CLM: -2%, HadRM3Q0:

-7%), the ECHAM5/MPI-OM models an increase (ICTP-REGCM: 11%, MPI-M-REMO:

8%).

The effect of bias correction on modelling results is rather small in the first scenario pe-

riod. Seasonal differences in the timeseries generated with uncorrected and bias corrected

RCM data are inconsistent, but round up to zero for HadRM3Q0 and ICTP-REGCM,

and to three percentage points for ETHZ-CLM and MPI-M-REMO forcing. The pro-

jected increase of winter discharge is cushioned in the HadRM3Q0 and elevated in the

remaining RCM driven modelling runs. The decrease of spring discharge is generally not

altered substantially. Simulated changes in summer and autumn discharge are elevated

compared to uncorrected input in the ETHZ-CLM and MPI-M-REMO simulations, are

almost identical in the ICTP-REGCM and inconsistently modified in the HadRM3Q0

driven modelling runs. The hydrological change signal is more sensitive to bias correction

in the second scenario period. The differences are, with exception of the ETHZ-CLM

forced simulations, higher than in the 2011-2040 time-slice. The numerical impact of bias

correction on hydrological modelling is most problematic for the MPI-M-REMO forced

modelling chain. Projected changes in seasonal mean discharge conditions are altered

considerably and the arithmetic sign of the summer discharge trend has changed (table

4.7).
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Table 4.7: Changes in seasonal mean discharge [%] since 1961-1990 at gauging station
Calbe-Grizehne, simulated with uncorrected and bias corrected climate model
data. DJF: Winter, MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 27 -15 9 0 4 27 -14 -13 -16 -2
HadRM3Q0 26 -17 0 7 2 18 -19 -11 -16 -7
ICTP-REGCM 12 -9 -6 8 2 22 4 7 6 11
MPI-M-REMO 19 -13 -11 9 1 31 -6 -1 5 8

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 29 -13 14 5 7 25 -14 -12 -12 -2
HadRM3Q0 24 -17 -3 8 2 12 -21 -16 -19 -10
ICTP-REGCM 13 -8 -6 7 2 22 7 10 6 13
MPI-M-REMO 26 -13 -8 15 4 42 -8 2 11 12
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Figure 4.6: Changes in monthly mean discharge at gauge Calbe-Grizehne between 1961-

1990 and 2011-2040, modelled with uncorrected (l) and bias corrected (r)

climate model data.

66



I II III IV V VI VII VIII IX X XI XII
Month

40

20

0

20

40

60

80

[%
]

ETHZ-CLM
HadRM3Q0
ICTP-REGCM
MPI-M-REMO

I II III IV V VI VII VIII IX X XI XII
Month

40

20

0

20

40

60

80

[%
]

ETHZ-CLM
HadRM3Q0
ICTP-REGCM
MPI-M-REMO

Figure 4.7: Changes in monthly mean discharge at gauge Calbe-Grizehne between 1961-

1990 and 2061-2090, modelled with uncorrected (l) and bias corrected (r)

climate model data.

4.2.2 Gauge Halle-Trotha, Saale

In the 2011-2040 scenario period all RCM driven simulation project a considerable in-

crease of winter discharge, highest relative changes result from modelling with ETHZ-CLM

(28%), lowest from ICTP-REGCM data (13%). Spring discharge is reduced with rates

between -18% (HadRM3Q0) and -8% (ICTP-REGCM), all model runs simulate highest

discharge reduction for April (figure 4.8). ICTP-REGCM and MPI-M-REMO forcing of

the hydrological model indicates lower summer (-5% and -10%) and higher autumn dis-

charge (9% and 10%). The ETHZ-CLM driven simulation points to increased summer

(8%) and unchanged autumn, HadRM3Q0 to stable summer but higher autumn discharge.

Yearly mean streamflow is projected to be roughly stable, the shift in seasonal conditions

does balance out to yearly relative changes between 1% (MPI-M-REMO) and 3% (ETHZ-

CLM, ICTP-REGCM). In the 2061-2090 scenario period climate change impacts on the

annual discharge average are more significant but ambiguous. Mean discharge is reduced

in both HadCM and heightened in the ECHAM5/MPI-OM RCM driven modelling runs.

The winter discharge surplus is projected to be lower than in the previous time-slice mod-

elling river hydrology with RCM from the former model group. The simulations driven

with ICTP-REGCM and MPI-M-REMO indicate in contrary a further increase, whereas

especially the raise of December discharge is more distinct (figure 4.7). Spring, summer

and autumn discharge is decreasing according to the ETHZ-CLM and HadRM3Q0 driven

mHM runs, increasing for ICTP-REGCM and inconsistent for MPI-M-REMO forcing
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(table 4.8).

Bias correction does affect modelling results not at all or positively in arithmetic sign in

the first scenario period. The climate change signals from HadRM3Q0 and ICTP-REGCM

forced simulations are barely altered, the relative changes from ETHZ-CLM and MPI-

M-REMO driven modelling are slightly raised. The synthetic hydrological timeseries are

more sensitive to bias correction of the input data in the 2061-2090 period. The changes

projected from the MPI-M-REMO modelling chain deviate most significantly, from ICTP-

REGCM least. The stable climate change signals in both HadRM3Q0 driven simulations

during the first scenario period are not preserved that exactly in the second, whereas they

are in the ETHZ-CLM forced simulations.

Table 4.8: Changes in seasonal mean discharge [%] 1961-1990 at gauging station Halle-
Trotha, simulated with uncorrected and bias corrected climate model data.
DJF: Winter, MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 28 -17 8 0 3 28 -17 -15 -19 -4
HadRM3Q0 26 -18 0 7 2 21 -20 -10 -13 -6
ICTP-REGCM 13 -8 -5 9 3 23 3 6 4 10
MPI-M-REMO 21 -14 -10 10 1 33 -9 -3 5 7

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 29 -15 13 5 6 23 -18 -15 -17 -6
HadRM3Q0 24 -18 -3 9 2 13 -22 -16 -16 -9
ICTP-REGCM 15 -7 -4 8 3 23 6 9 4 12
MPI-M-REMO 28 -14 -8 15 4 43 -9 -1 10 11
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Figure 4.8: Changes in monthly mean discharge at gauge Halle-Trotha between 1961-1990

and 2011-2040, modelled with uncorrected (l) and bias corrected (r) climate

model data.
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Figure 4.9: Changes in monthly mean discharge at gauge Halle-Trotha between 1961-1990

and 2061-2090, modelled with uncorrected (l) and bias corrected (r) climate

model data.

4.2.3 Gauge Laucha, Unstrut

For the 2011-2040 scenario period all model runs project a considerable shift in the dis-

charge regime of the river Unstrut. With exception of ETHZ-CLM forcing and summer,

seasonal projections generated with all RCM point in the same direction, higher mean

discharge during Winter and Autumn with a peak in January or February, lower dis-

charge during spring and summer (figure 4.10). Three runs indicate higher yearly mean

discharge (1% to 6%), only MPI-M-REMO a slightly reduced one (-3%) (table 4.9). 2061-

2090 scenario period simulations differ more explicitly. Forcing mHM with one of the

HadCM RCM indicates a decrease of yearly mean discharge (-2% and -10%), while both

ECHAM5/MPI-OM RCM driven modelling runs simulate the opposite (12% and 5%).

All models project an increase of winter discharge. The surplus is, compared to the 2011-

2040 scenario period, lower modelling with ETHZ-CLM and HadRM3Q0 and higher using

ICTP-REGCM and MPI-M-REMO data. The former two model runs project a consid-

erable decrease of seasonal mean discharge for spring, summer and autumn as well as for

all individual months (figure 4.11). ICTP-REGCM forcing indicates an increase during
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all seasons and months, the MPI-M-REMO driven simulation an increase of autumn and

a decrease of spring and summer discharge.

Simulated climate change impacts are in generally positively altered by biases correc-

tion, i.e. upward trends in streamflow are consolidated, downward trends cushioned. In

the 2011-2040 scenario period changes in hydrology are influenced most substantially in

the ETHZ-CLM driven simulations. The change in yearly mean discharge is increased

(from 6% to 10%), as are all seasonal values. Impact projections from the remaining mod-

els are affected less, changes in yearly mean discharge are altered little or not at all in the

HadRM3Q0, ICTP-REGCM and MPI-M-REMO driven runs. The disparity in discharge

dynamics simulated with uncorrected and bias corrected climate model data gets greater

in the 2061-2090 period. Yearly mean discharge changes produced with any model are

affected, highest differences are found between the MPI-M-REMO simulations, and the

arithmetic sign has changed in the bias corrected ETHZ-CLM simulation (table 4.9).

Table 4.9: Changes in seasonal mean discharge [%] 1961-1990 at gauging station Laucha,
simulated with uncorrected and bias corrected climate model data. DJF: Win-
ter, MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 25 -11 7 5 6 21 -8 -17 -13 -2
HadRM3Q0 24 -15 -4 5 1 12 -18 -18 -23 -10
ICTP-REGCM 12 -5 -5 11 4 21 7 6 10 12
MPI-M-REMO 13 -14 -15 4 -3 27 -5 -8 4 5

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 27 -9 12 13 10 22 -7 -13 -4 1
HadRM3Q0 21 -14 -6 7 2 5 -20 -21 -25 -13
ICTP-REGCM 15 -4 -5 10 5 23 11 8 10 14
MPI-M-REMO 17 -14 -15 8 -1 34 -5 -6 9 10
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Figure 4.10: Changes in monthly mean discharge at gauge Laucha between 1961-1990

and 2011-2040, modelled with uncorrected (l) and bias corrected (r) climate

model data.
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Figure 4.11: Changes in monthly mean discharge at gauge Laucha between 1961-1990

and 2061-2090, modelled with uncorrected (l) and bias corrected (r) climate

model data.
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4.2.4 Gauge Rudolstadt, Saale

The most substantial alterations of river discharge are projected for the gauging station

Rudolstadt, although changes in yearly average discharge do not directly reflect seasonal

ones. Winter changing rates range from 17% (ICTP-REGCM) to 41% (ETHZ-CLM)

in the 2011-2041 period, with also exceptional high values for HadRM3Q0 (31%) and

MPI-M-REMO (40%). The ETHZ-CLM and ICTP-REGCM driven simulations project

highest discharge increases for January, the HadRM3Q0 and MPI-M-REMO forced runs

for February (figure 4.12). Spring discharge is also stronger affected than at other sta-

tions, projected reductions ranges from -11% (ICTP-REGCM) to -24% (HadRM3Q0).

Summer discharge change is simulated to be positive in arithmetic sign in ETHZ-CLM

and HadRM3Q0 driven modelling and negative in the ICTP-REGCM and MPI-M-REMO

forced runs. Simulated autumn discharge is more stable as three out of four simulations

(exception ETHZ-CLM) indicate higher seasonal mean discharge (table 4.10). In the

2061-2090 scenario period the drastic shift of peak discharge into winter is even more

pronounced. All model runs indicate higher increases compared to the previous period.

Differences in the inter-seasonal variability of changing rates exist. ECHAM5/MPI-OM

RCM driven simulations indicate similar increases for the months December and January,

modelling with any of the HadCM RCM indicates a clear peak for the first month of

the year (figure 4.13). Spring discharge decreases according to all simulations, as sum-

mer and autumn streamflow volumes in ETHZ-CLM and HadRM3Q0 forced runs. The

ICTP-REGCM driven simulation indicates no major changes for the second half of the

hydrological year, MPI-M-REMO input to mHM a slight decrease for summer and an

increase for autumn. Projected changes of yearly mean discharge are controlled by driv-

ing GCM, the HadCM based modelling chains show an upward, the ECHAM5/MPI-OM

RCM forced simulations a downward trend.

Bias correction affects results in the first scenario period non-uniformly. Winter dis-

charge changes are reduced modelling with bias corrected ETHZ-CLM and HadRM3Q0

input, but are elevated using the corrected ICTP-REGCM and MPI-M-REMO datasets.

Other seasonal changes are only slightly altered, highest differences occur for HadRM3Q0

forcing in summer. In the 2061-2090 period simulated winter discharge changes are re-

duced in three out of four cases, only corrected MPI-M-REMO forcing indicates a stronger

seasonal climate change signal. Spring, summer and autumn discharge changes are, as

in the 2011-2040 period, only slightly altered, whereas the HadCM based model runs are

generally more sensitive (table 4.10).
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Table 4.10: Changes in seasonal mean discharge [%] 1961-1990 at gauging station Rudol-
stadt, simulated with uncorrected and bias corrected climate model data.
DJF: Winter, MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 41 -22 5 0 3 50 -27 -12 -21 -3
HadRM3Q0 31 -24 1 5 0 34 -27 -8 -12 -4
ICTP-REGCM 17 -11 -8 9 3 28 -7 1 0 7
MPI-M-REMO 40 -17 -5 19 6 56 -19 -1 7 9

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 38 -21 7 3 4 39 -27 -13 -22 -5
HadRM3Q0 27 -24 -4 7 0 25 -28 -14 -15 -8
ICTP-REGCM 18 -10 -7 7 3 26 -4 4 -1 8
MPI-M-REMO 43 -17 -3 22 8 64 -21 -1 10 11
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Figure 4.12: Changes in monthly mean discharge at gauge Rudolstadt between 1961-1990

and 2011-2040, modelled with uncorrected (l) and bias corrected (r) climate

model data.
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Figure 4.13: Changes in monthly mean discharge at gauge Rudolstadt between 1961-1990

and 2061-2090, modelled with uncorrected (l) and bias corrected (r) climate

model data.

4.2.5 Gauge Hadmersleben, Bode

The increase of winter discharge in the 2011-2040 scenario period is, especially for the

modelling based on ECHAM5/MPI-OM RCM less distinct than at the former gauging

stations. Both timeseries indicate further highest seasonal decreases for summer rather

than spring (14% each). The simulations forced with the HadCM RCM deviate less

from the modelling results obtained for other stations. Winter discharge is simulated

to increase by 24% (ETHZ-CLM) and 23% (HadRM3Q0), spring discharge to decrease

by -8% and -14%, respectively. The projections for the second half of the hydrological

year are inconsistent, ETHZ-CLM forcing indicates an increase of summer discharge (6%)

with a peak in June (figure 4.14) and a decrease of autumn discharge (-2%), HadRM3Q0

opposing seasonal impacts (-2% and 2%). The development of yearly mean discharge

is not univocal, ICTP-REGCM and MPI-M-REMO driven simulations indicate a slight

reduction (-1% and -2%), the ETHZ-CLM and HadRM3Q0 modelling runs an heightening

(5% and 2%). In the 2061-2090 period the results are more uniformly. ICTP-REGCM,

MPI-M-REMO and ETHZ-CLM driven simulations project an increase of yearly mean

discharge. The significant reduction in the HadRM3Q0 modelling results is reflected in

negative trends for spring, summer and autumn. ETHZ-CLM driven modelling simulates

raising winter, reduced summer/autumn and spring discharge on the 1961-1990 control

period level. Both HadCM based modelling chains indicate highest negative changes for

summer months, ETHZ-CLM in July, HadRM3Q0 in August (figure 4.15). The ICTP-
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REGCM forced simulation prognosticates higher discharge throughout all seasons, but

most pronounced for winter. MPI-M-REMO driven modelling shows a dichotomy between

lower spring/summer and higher autumn/winter streamflow (table 4.11).

Bias correction affects changes in seasonal average discharge simulated with HadRM3Q0

and ICTP-REGCM data in the 2011-2040 period barely. Projected changes in river hy-

drology are altered more decisively for the ETHZ-CLM and MPI-M-REMO driven simu-

lations, whereas in the latter the general direction of simulated changes is reversed. The

second scenario period results are more distinct from modelling forced with uncorrected

RCM data. The general pattern of moderate differences in the HadRM3Q0 and ICTP-

REGCM generated streamflow timeseries and considerably higher in the ETHZ-CLM and

MPI-M-REMO based simulations is however preserved. The climate change signal is again

especially distorted in the MPI-M-REMO forced simulations, the main trend are however

preserved (table 4.11).

Table 4.11: Changes in seasonal mean discharge [%] 1961-1990 at gauging station Had-
mersleben, simulated with uncorrected and bias corrected climate model data.
DJF: Winter, MAM: Spring, JJA: Summer, SON: Autumn.

2011-2040 2061-2090

not corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 24 -8 6 -3 5 29 0 -10 -3 6
HadRM3Q0 23 -14 -1 1 2 9 -17 -20 -29 -12
ICTP-REGCM 7 -11 -14 6 -2 17 7 8 9 11
MPI-M-REMO 11 -12 -14 7 -2 27 2 5 8 11

bias corrected DJF MAM JJA SON Year DJF MAM JJA SON Year

ETHZ-CLM 28 -8 8 3 8 37 -1 -4 6 11
HadRM3Q0 24 -15 -2 2 2 8 -20 -21 -31 -14
ICTP-REGCM 9 -11 -14 5 -2 19 7 9 12 12
MPI-M-REMO 18 -14 -9 15 2 39 -5 9 14 14
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Figure 4.14: Changes in monthly mean discharge at gauge Hadmersleben between 1961-

1990 and 2011-2040, modelled with uncorrected (l) and bias corrected (r)

climate model data.
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Figure 4.15: Changes in monthly mean discharge at gauge Hadmersleben between 1961-

1990 and 2061-2090, modelled with uncorrected (l) and bias corrected (r)

climate model data.

76



4.2.6 Common trends in hydrological projections

The evaluation of all modelling runs carried out reveals large discrepancies but also a

number of common tendencies. The most stable communality in all runs is the shift

of the high flow period from spring to winter, indicated by the considerable increase of

winter and decrease of spring discharge simulated with all RCM. There are however dif-

ferences in magnitude and temporal evolution in the respective modelling runs, seemingly

induced by driving GCM. Simulations forced with ETHZ-CLM and HadRM3Q0 data,

both downscaling HadCM circulation pattern, tend to project a strong increase of winter

discharge during the next three decades and a roughly stable trend until the end of the

century. Simulations with input from the ECHAM5/MPI-OM models (ICTP-REGCM

and MPI-M-REMO) indicate a smoother but lasting trend. Changes in spring discharge

are in general less pronounced and similar in all modelling runs and the entire ensembles

indicates a more profound change for the first than he second scenario period There is

no common trend in the simulations for summer and autumn in neither scenario period.

ECHAM5/MPI-OM RCM forcing leads in general to more consistent results in the first

(reduced summer, increased autumn discharge), HadCM forcing in the second (decreasing

spring, summer and autumn discharge). The seasonal variability sums up to a slightly in-

creased yearly water supply from the Saale and its tributaries in the first scenario period

and to ambiguous results for the second. HadCM based modelling projects decreasing

water supply, the ECHAM5/MPI-OM model chains the opposite.

The regional aspect of climate change is not excessively distinct. Simulations at the

single gauging stations do deviate in certain aspects, like height and inter-annual variabil-

ity of changing rates, but are in general rather similar. Only the much more pronounced

change of the hydrological regime at station Rudolstadt is striking. Reasons for the re-

markable results can be manifold and found in the meteorological forcing as well as in

the physiographical properties of the respective catchment. The position of the gauging

station, only a few kilometres downstream the large Saale damsystem, the intense water

withdrawal during the second half of the 20th century and the difficulties arising from the

implicit modelling of the dam management, should be kept in mind, when interpreting

these results.

Bias correction does affect hydrological trends stronger than the differences in meteo-

rological forcing suggest. Changes in river discharge are altered seemingly arbitrary, but

a slight tendency towards positive alterations, i.e. a stronger climate change signal in

case of upward, a weaker in case of downward trends, can be stated. General trends are

basically preserved in the first scenario period, but results from corrected and uncorrected

RCM forcing deviate more substantially in the second. The sensitivity to bias correction

strongly depends on climate model and driving GCM seems to be a bad predictor. Dis-

charge generated with MPI-M-REMO is frequently affected most, ICTP-REGCM often

77



least. Trends in ETHZ-CLM simulations are usually more sensitive to bias correction in

the first scenario period, HadRM3Q0 forced modelling in the second.

78



5 Discussion

Study Design

The output from four Regional Climate Models (RCM), also used to force the hydrologi-

cal model mHM, was evaluated against gridded observational data. The choice of exactly

these RCM was lead by considerations about the uncertainties within the climate mod-

elling chain and the predominant research practice in Germany. A lack of common sense

in choosing appropriate models and representative sample sizes became apparent when

examining the literature. Especially studies evaluating climate change impacts in german

river basins are mostly based on a small number of climate projections, usually MPI-M-

REMO or statistically downscaled data from ECHAM5/MPI-OM or their predecessors,

both setup at the Max Planck Institute for Meteorology in Hamburg (e.g. Hattermann

et al. (2008), Kropp et al. (2009), Huang et al. (2010)). On a more international scale

ensemble strategies became more widespread during the recent years. Graham et al.

(2007b) evaluated the climate change signal from 11 RCM nested into one Global Circu-

lation Model (GCM), in a similar study Graham et al. (2007a) expanded the experimental

design by including a second GCM. Andersson et al. (2011) and Graham et al. (2011)

explicitly assessed uncertainty in streamflow simulations introduced by GCM boundary

conditions. The actual choice of RCM, especially in studies focusing on a low number

of climate models, seems often to be motivated by ’national’ considerations. Not only

german scientists prefer climate models developed at german institutions. British impact

studies are subsequently often based on one of the HadRM realisations provided by the

Met Office Hadley Centre in Exeter (e.g. Kay et al. (2006), Fowler and Kilsby (2007)),

Swedish studies usually use projections from the climate model RCA, developed at the

Rosby Centre, Norrköping (e.g. Andersson et al. (2011), Kjellström et al. (2011)).

Data Characteristics

As reported in the literature (e.g. Jacob et al. (2007), Christensen et al. (2008), Kjell-

ström et al. (2011)), all RCM revealed considerably shortcomings in the representation

of the study area climate (section 3.1). Although modelled past temperatures fit the ob-

servational data reasonably, precipitation is only poorly represented. The RCM clearly

overestimate this important climatological variable and two models, ETHZ-CLM and

ICTP-REGCM, also misrepresent the monthly variability of precipitation throughout the
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year. It turned out that deviations from observational data are mainly a result of the

poor representation of low precipitation events and the underestimation of dry days. It

could be shown that aggregated monthly values from RCM nested into the same GCM are

closer related to each other than to the remaining models. This conclusion does not hold

with respect to the cumulative frequency distributions. Smallest inter model deviations

are always found between RCM downscaling different GCM boundary conditions.

Despite the need to evaluate climate model output against observational data in order

to detect systematic errors in the different RCM variables, a number of problems arise

from this proceeding. Especially precipitation measurement, in the context of the poor

representation of rainfall in climate models the most important measured quantity, seems

to be a challenging task. Instrument and wind errors occur, Marx (2007) pointed to the

fact, that even precipitation measurements from devices in immediate vicinity may de-

viate considerably. The spatial interpolation of the potentially flawed timeseries, usually

necessary to bridge the gap between the different data scales, might multiply these inac-

curacies. The horizontal resolution of the available gridded observational dataset (4 km)

necessarily implies that, even considering the dense monitoring network operated by the

German weather service (DWD), a large number of grid cells do not contain any obser-

vations. Lenderink (2010) concluded that errors in spatially interpolated observational

data may be substantial in areas of a low measurement/grid-cell ratio and that structural

RCM biases may in fact be partly induced by an erroneous basis of comparison. Browsing

the literature for methods dealing with different horizontal resolutions, map projections

and/or coordinate systems, the lack of attention to this import step in the assessment of

climate model uncertainty becomes apparent. Again no common practice can be found,

Huang et al. (2010) used inverse distance weighting to interpolate climate data to the

hydrological model resolution, van Roosmalen et al. (2010) bilinear interpolation, Kun-

stmann et al. (2004) a combination of different methods, whereas other studies not even

refer to the techniques applied (e.g. te Linde et al. (2010), Graham et al. (2011)).

Bias Correction

Out of the great variety of methods to deal with climate model biases proposed and

modified during the recent years, a relatively simple one was chosen. It was shown that the

bias correction applied was able to reduce RCM biases of the focused statistical parameter,

monthly mean precipitation, to values between 3% and 6% (subsection 3.2). These results

are well line with more complex techniques adjusting several parameters of the empirical

distribution function (e.g. te Linde et al. (2010), Graham et al. (2011)). It turned out that

the procedure does affect the different moments of the empirical cumulative distribution

function (CDF), in case of rainfall data a highly asymmetrical one, differently. Especially

the high precipitation amounts at the upper end of the CDF are reduced substantially

in order to balance the, with this procedure not adjustable, too high number of rain
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days. This does imply, that the sensitivity of the impact model to certain moments of the

distribution, the corrected data is to force, and possibly unwanted side-effects have to be

considered in advance.

The temporal stability of the correction was rather high when evaluating the generated

datasets against observation in a later control period. Yearly biases were in fact in two

cases lower, in one identical and in only one higher in the 1980-2009 time-slice than

in the bias correction period itself. The spread of seasonal biases is higher. While the

ECHAM5/MPI-OM driven models ICTP-REGCM and MPI-M-REMO preserved the data

characteristics of the correction period fairly well, the HadCM models ETHZ-CLM and

HadRM3Q0 deviate more decisively, especially in summer and spring. The inherent model

dynamics is able to counteract the correction, here without pushing results out of a

reasonable range. The observational data also revealed a certain precipitation dynamics

between the two time-slice. It might be worth considering not to fix the correction period

to the 30 years of the climate normal defined by the World Meteorological Organisation

(WMO) (Arguez and Vose (2011)), rather than using a longer timeseries.

Although a tendency towards much more complicated correction procedures is found in

the literature, keeping things simple seems to be a reasonable choice. It is surely possible

to transform any given distribution to a certain target function by statistics. The main

idea behind any bias correction should be however, to disturb the physical consistency of

the climate model output and the simulated dynamics as less as possible by generating

an operable dataset.

Hydrological Modelling

The synthetic discharge timeseries generated with mHM and observational forcing were

evaluated against observed discharge at all five gauging stations for the 1961-1990 con-

trol period (section 4.1). The usual performance measures used in hydrology indicate

reasonable model fits, although the observed discharge is systematically underestimated

(between -19% and -17%). The volumetric bias is only at the smallest gauging station

Hadmersleben considerably lower (-4%). Reasons for this misrepresentation can be var-

ious, but might be a relict of calibration. The objective function used in the parameter

optimisation routine is, according to Krause et al. (2005), not very sensitive to systematic

errors and more focused to high than to low extremes. Biases may as well result from

erroneous meteorological forcing, an inadequate model structure, insufficient represen-

tation of the river basin physiography or the not explicitly modelled, large scale water

management for industrial and agricultural proposes during the second half of the 20th

century.

Forcing the hydrological model with uncorrected RCM output clearly reflects model bi-

ases in the 1961-1990 period, which is in accordance to previous studies (e.g. Graham et al.

(2007b), te Linde et al. (2010)). Simulated discharge volumes are, with exception of MPI-
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M-REMO forcing and the station Hadmersleben, excessively biased. Differences between

the sub-catchments exist, timeseries deviations are in general lowest at gauging station

Laucha (Unstrut), but never in a reasonable range. The inter-annual variability, i.e. a dis-

charge peak in spring and marked low flow conditions in summer and autumn, is in turn

approximated by all RCM driven modelling runs with exception of the ICTP-REGCM

simulations. Discharge biases usually exceed the precipitation biases of any respective

model with a factor between two and three, climate model errors do obviously multi-

ply along the modelling chain. The direct use of RCM data as forcing of the hydrological

model mHM is not advisable, if reasonable streamflow volumes are in the scope of doing so.

GCM characteristics is better preserved in the results from ETHZ-CLM and HadRM3Q0

(HadCM) than from ICTP-REGCM or MPI-M-REMO (ECHAM5/MPI-OM). These sim-

ilarities seem to be systematic, Graham et al. (2007b) reported comparable results from

hydrological modelling with different RCM nested in the atmospheric part of the HadCM

model.

Synthetic discharge timeseries from bias corrected climate model forcing are in most

cases close to observation. The achieved fit does however depend on RCM and river catch-

ment. The modelling results from ICTP-REGCM forcing are generally biased most, and

the performance of all runs is rather low at the two smallest gauging stations Rudolstadt

and Hadmersleben. The low number of RCM grid cells covering the small sub-catch-

ments makes these simulations especially susceptible to local input data biases. A certain

threshold catchment size seems to be necessary to average out remaining model errors on

the grid scale. For the study area and the presented model setup, the size of the Unstrut

sub-catchment, about 6000 km2 and thus covered by roughly 10 RCM grid cells, seems

to be a reasonable choice.

Climate Projections

Projected climate change and resulting hydrological impacts were evaluated as the dif-

ferences in longterm means between any of the two timeslices 2011-2040 and 2061-2090,

hereafter also named first and second scenario period, and the 1961-1990 control period.

All RCM indicate upward trends for yearly mean temperature, annual precipitation sums

and 95-percentiles. The span of temperature increases ranges from 0.8◦ K to 1.8◦ K for

the 2011-2040 and from 2.6◦ to 3.9◦ K for the 2061-2090 period (subsection 3.3.1). Tem-

perature increases are not balanced throughout the year, the climate simulations indicate

in fact a more profound change for winter and autumn. Trends in precipitation are more

unequivocal. The model ensemble indicates stable positive changing rates for autumn and

winter rainfall totals and the corresponding 95-percentiles in the first scenario period. The

positive trends in the latter statistical parameter are supplemented by increasing spring

95-percentiles in the second scenario period. All models indicate further a lasting positive

trend for winter and less significant increases for spring precipitation totals in the end of
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the century time-slice (subsection 3.3.2). Rates of projected changes in precipitation are

however always lower than inherent model biases, a weak climate change signal following

the argumentation of van Roosmalen et al. (2010), similar projections by four different

RCM seem anyhow to be a reasonably resilient result.

The characteristics of GCM boundary conditions are well preserved in both model

groups and scenario periods, although simulated changes of monthly mean temperatures

and their yearly cycles are closer related in the ECHAM5/MPI-OM driven RCM. Seasonal

trends in precipitation are also related to driving GCM, but reveal larger differences on the

monthly scale. Even RCM nested into the same GCM indicate in cases opposing climate

change signals. The applied bias correction does not disturb the simulated dynamics

in precipitation. Deviations in projections from uncorrected and corrected data of any

respective model are rather marginal and do not exceed two percentage point for any

model, season or scenario period.

Hydrological Projections

Trends in the projections of future discharge vary according to forcing climate model

data. The simulations indicate anyhow a shift of the high flow regime from spring into

winter in every sub-catchment and an increase of autumn and yearly average discharge

for the Saale River in the first scenario period. Climate change signals for the explicitly

simulated tributaries Unstrut and Bode are more unequivocal. MPI-M-REMO forcing

projects decreasing yearly average streamflow volumes for the former sub-basin, ICTP-

REGCM and MPI-M-REMO for the latter. The remaining modelling results each point

into the opposite direction. Changes in hydrological are more variable and pronounced in

the second scenario period. Yearly mean discharge volumes are projected to raise in all

sub-catchments in the ECHAM5/MPI-OM based modelling chains and, with exception

of the Bode River and ETHZ-CLM forcing, to decline in the simulations driven with

downscaled HadCM circulations fields. The negative spring discharge trend found in the

first scenario period is not that clear in the second. The models MPI-M-REMO and

especially ICTP-REGCM indicate in fact possible local upward trends. Most timeseries

show in turn a stable decrease of summer discharge and the GCM based dichotomy of

projected changes in yearly averages is reflected in autumn (section 4.2).

These results agree in general with other studies assessing impacts of climate change

on river hydrology in Germany. A clear negative summer discharge trend in the first half

of the century, as frequently reported in the literature (e.g. Dankers et al. (2007), Hat-

termann et al. (2008), Huang et al. (2010)), is however not supported by the simulations

made in the present setup. The unanimous results from these and other studies (see chap-

ter 1) are not surprisingly considering the used meteorological forcing, almost exclusively

downscaled circulation patterns from ECHAM5/MPI-OM or its predecessor. These find-

ings are well confirmed with the presented modelling results, as the simulations driven by
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both ECHAM5/MPI-OM nested regional climate models maintain these conclusion. The

HadCM driven RCM do not, a fact pointing to the necessity of including an adequate

number of climate models in impact studies. A comparison to the study from Kropp et al.

(2009) shows interesting deviations. The authors modelled streamflow at the gauging sta-

tions Calbe-Grizehne and Hadmersleben with bias corrected A1B MPI-M-REMO input

to the hydrological model SWIM. Stable upward discharge trends throughout the entire

and for three different scenario periods are reported. Although these contrary findings,

especially noticeable for spring, would need a precise examination, the diverging results

might point to the uncertainty introduced by the hydrological model and/or the applied

bias correction procedure.

Bias correcting the meteorological forcing of the hydrological model affects the sim-

ulation results more than the numerical differences between corrected and uncorrected

datasets suggest (section 4.2). There are certain differences in introduced distortion. The

underlying GCM boundary conditions are here a bad predictor for hydrological modelling

sensitivity. It could be shown that in fact the two ECHAM5/MPI-OM nested RCM

delimit the range of deviations from undisturbed model forcing, ICTP-REGCM at the

lower, MPI-M-REMO at the upper end. The HadCM based modelling chains are less

consistent. Simulating streamflow with bias corrected input from HadRM3Q0 tends to

generate changing rates close to uncorrected forcing in the first, ETHZ-CLM in the second

scenario period. Changing rates are seemingly arbitrarily altered, only a slight tendency

towards increased rates, i.e. a stronger climate change signal in case of positive alteration,

a weaker in case of negative one, can be stated. General direction and magnitude of sim-

ulated changes are rather well preserved in the first scenario period and for HadRM3Q0

and ICTP-REGCM forcing also in the second.

Correcting RCM data for biases is a common practice in hydrological climate impact

modelling. The numerical effects, especially on the projected change signal, are presented

in some studies (e.g. van Pelt et al. (2009) or te Linde et al. (2010)), but they are not

always addressed explicitly (e.g. Graham et al. (2011) or Andersson et al. (2011)). Con-

sidering the wide variety of methods proposed in the literature, these information would

be extremely useful to estimate the suitability of the respective technique. Analysing the

modelling results from this study the questions may arise, if bias correction is even a nec-

essary step when assessing climate change impacts by hydrological modelling. The answer

is twofold. There is evidence that bias correcting climate model data does not change

simulated streamflow dynamics substantially within a 50 year period, but that it does,

at least in some model combinations, on larger time scale. With the scope of producing

reasonable monthly average discharge volumes for the nearer future, the applied correc-

tion method in the described setup seems to be an uncritical choice. It might however

be more appropriate to simulate streamflow with uncorrected meteorological forcing if a

physically consistent and/or longer term climate change signal is more important than
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realistic hydrological simulations.

RCM performance in hydrological modelling

The large biases in the climatological data and their translation into even higher biased

streamflow simulations point to the fact, that non of the RCM is suitable to force an hy-

drological model directly. If necessary the regional climate model MPI-M-REMO would

have to be named as the RCM out of the ensembles performing most reasonable. Devia-

tions from observational data between 32% and 52% in yearly averages, with the one solely

exception at gauging station Hadmersleben (-3%), are anyhow far from acceptable mod-

elling errors. Bias correcting the meteorological forcing does in turn work in most cases

similarly well, although the simulations driven with the HadCM based models, match the

inter-annual variability in the 1961-1990 control period more precisely. Major differences

exist concerning the distortion of simulated climate change impact by bias correction.

From this point of view even the model ICTP-REGCM, in all evaluated parameters bi-

ased most, might be an appropriate choice. MPI-M-REMO preserves the original data

characteristics worst.

As the complexity of climate models in general and of climate impact modelling in

particular, makes reliable statements on the suitability of single RCM for hydrological

modelling purposes difficult, no such validation will be done at this point. All illustrated

shortcomings in climate model data and deviations in the impact simulations clearly

indicate the necessity of the chosen ensemble approach, in order to identify stable trends,

outliers and a section of the uncertainty span.
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6 Conclusions

All available meteorological observations indicate changing climatological conditions for

Europe in general (IPCC (2007)) and Germany in particular (Schönwiese et al. (2006)).

Scientific research provides evidence that this artificial climate dynamics is already re-

flected in most environmental sub-systems (IPCC (2007)), not least in the hydrological

cycle (Petrow and Merz (2009)). The particular importance of freshwater supply through

streams and rivers and the problematic consequences of hydrological extremes in either

direction, makes knowledge about possible impacts of a changing climate increasingly

important. The impossibility to directly gather information about the future, favoured

the development of a large set of scientific tools allowing to assess possible climatological

trends under given boundary conditions. Complexity and non-linearity of the underly-

ing natural systems and their error-prone representation in computer-based models does

however result in largely deviating future estimates.

In order to compare these differences in four methodological similar Global Circula-

tion Model (GCM) - Regional Climate Model (RCM) combinations and to analyse their

translation into simulated hydrological timeseries, a comprehensive climate impact study

has been carried out. The relevant climate model output variables were evaluated against

spatially interpolated weather station data, biases within the statistical parameters pe-

riodical temperature averages, precipitations sums and, as a measure of extreme events,

corresponding 95-percentiles were quantified. The analysis of climate model output proved

the shortcomings of RCM data reported in the literature. For the area of the Saale water-

shed, situated in central Germany, in general rather small temperature, but large positive

precipitation biases were found. It was shown that non-precipitation days are clearly

underrepresented in all RCM timeseries. Deviations between the empirical cumulative

distribution functions (CDF) from modelled and gridded observational data are decreas-

ing towards the upper end of the CDF.

The excessive biases in modelled rainfall were accounted for by a simple bias correction

procedure, the numerical effects were analysed for a past and two future scenario periods.

The applied correction was able to reduce errors in the corrected statistical parameter,

longterm averaged monthly precipitation sums, significantly. It was in turn not possible

to adjust the entire CDF comparable. Defined as a single multiplication, the general

division of the datasets into dry and raining days was not altered, which implicated a
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disproportionately reduction of the high precipitation amounts. With respect to the cor-

rected statistical parameter, a reasonable long-term stability of the method was proven.

The inherent data dynamics, the projected climate change, was in none of the scenario

periods substantially altered.

The recently developed mesoscale hydrological model mHM was calibrated to observa-

tional data. Synthetic discharge timeseries were generated for five gauging station covering

two of the three largest tributaries of the Saale and the stream itself threefold. All results

were evaluated against observation to estimate general modelling performance of RCM

forced hydrological simulations on the mesoscale. Changes in river hydrology induced by

altered climatic conditions are analysed for stable trends in two scenario periods. Dis-

tortions of the climate change signal introduced by bias correction were accounted for

by explicitly simulating streamflow with uncorrected and bias corrected climate model

forcing.

Hydrological modelling with uncorrected RCM forcing clearly reflected and even mul-

tiplied the inherent climate model biases. Relative deviations between observational and

modelled streamflow data were considerably larger than the differences between the precip-

itation timeseries suggest. Bias corrected RCM input to the hydrological model performed

in contrast well. Generated streamflow was in most cases close to observation, the general

benefit from bias correction in the climate impact model chain could be shown. A clear

decrease of modelling performance, obviously dependent on size of the modelling-domain,

became apparent for the small sub-catchments. A certain threshold number of RCM grid

cells covering the study area, was necessary in order to ensure reasonable hydrological

simulations. In the described setup ten RCM grid cells have been an appropriate choice.

The dynamics in RCM data, as well as the output from hydrological modelling, was

quantified for two scenario time slices in the first and the second half of the century. All

models in the ensemble clearly indicated upward trends for temperature and precipitation.

A general warming throughout the entire year is commonly projected, whereas autumn

and winter temperatures are likely to increase more substantially. The magnitude, not the

direction, of actual changing rates depended on GCM. Trends in precipitation were not

comparably unequivocal, simulations point in different directions for spring/summer in

the first and summer/autumn in the second scenario period. There is evidence, that win-

ter and autumn rainfall amounts, as well as frequency and/or intensity of extreme events,

already increase during the next three decades. Upward trends in winter precipitation

totals, in winter and autumn extremes were projected to last throughout the century. All

models indicated further a positive climate change signal for spring rainfall activity.

The numerous hydrological simulations only partly confirmed results from similar stud-
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ies. Future increase of winter discharge, frequently reported in the literature, was repro-

duced in the simulations with mHM. A usually also stated clear trend towards decreasing

summer streamflow during the first half of the century in turn not. The entire ensemble

indicated a slight increase of yearly average discharge for most gauging stations in the

first scenario period. Seasonal trends showed a general dichotomy, obviously controlled

by underlying GCM. Streamflow data, generated with downscaled ECHAM5/MPI-OM

simulations, also used in most available hydrological impact studies for Germany, did in

fact indicate a negative trend for summer mean discharge in the 2011-2040 scenario pe-

riod. Forcing mHM with downscaled HadCM circulation patterns in contrary not. These

inconsistencies in general modelling trends were even stronger in the second scenario time-

slice. The ECHAM5/MPI-OM based model chains indicated increasing annual discharge

volumes, the HadCM nested regional climate models clearly suggested negative trends.

The simulations revealed no significant differences in the hydrological climate change sig-

nals for the single gauging stations. Either there are none to be expected or, climate

model resolution is not appropriate to simulate a differentiated climate on a regional scale

considerably smaller than the size as the Study Area.

Modelled changes in river hydrology due to altered climatic conditions were slightly de-

pendent on input data preprocessing. Bias correcting the meteorological forcing affected

the hydrological climate change signal seemingly arbitrary, no clear pattern of distortion

could be found. Only a weak tendency towards positive alterations, i.e. stronger climate

change signals in case of upwards, weaker in case of downward trends, was quantified.

A temporal dependency was shown. Deviations in relative changes introduced by bias

correction are small in the first scenario period, but more significant in the second. In

cases the arithmetic sign of relative seasonal changes was inverted.

An important methodological contribution to the general practice in hydrological cli-

mate change impact modelling was made. The outstanding importance of a reasonably

large set of regional climate models and the necessity to include more than one driv-

ing Global Circulation Model was proven. Neglecting the uncertainty introduced by the

latter was marked as a likely source of misinterpretation of changes to be expected. Dis-

crepancies between simulated and observational data confirmed the need for an adequate

interfacing strategy in order to link climate model output to hydrological modelling. The

quantification of the numerical effects of a bias correction on simulated future discharge

dynamics, pointed to the uncertainty introduced by these widely used techniques.

Differences in RCM data and modelling results indicate that explicit and absolute con-

clusions about future hydrological conditions are not to be drawn from these. Simulating

past streamflow with observational meteorological forcing seems to work reasonably well.

The computational representation of the climate system is in turn not exact enough to nei-

ther reproduce measurements of temperature and precipitation nor observed streamflow
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when coupled to an hydrological model. The results from the present study are therefore

not to be mistaken as an authoritative forecast, they are however well suited to provide

information about possible and in case of the carved commonalities likely, future trends.

The span in results might make their usability in the every-day environmental planning

and decision-making practice difficult, but does also point to the uncertain nature of pre-

dictions. Examining the current climate impact research and the contributions from this

study leads to the conclusion, that very likely changes in the hydrological regimes of the

Saale and it main tributaries are best addressed with flexible solutions in planning and

permission processes.
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